一种基于信道测量的分类方法

    专利查询2022-08-27  88



    1.本发明涉及一种基于信道测量的分类方法,属于信道识别环境反向散射通信以及机器学习技术领域。


    背景技术:

    2.5g通信技术推动了万物互联的物联网技术的发展,物联网的一个重要特征就是大规模连接。每平方公里百万级的连接为物联网系统带来了能量消耗大、硬件费用高和频谱资源短缺三个挑战。环境反向散射系统的被动式通信方式通过反射环境中存在的信号达到和接收机通信的目的,不需要额外的频谱同时也降低了标签的成本,和大规模连接的发展需求相契合。
    3.实际使用时,需要对不同的小型射频收发设备进行分类。由于发射机和接收机之间的传播路径非常复杂,传播的机制也是多种多样的,在电波的传播过程中会受到信道的影响,因此可以利用接收机接收到的信号对信道特性的表征来对小型射频收发设备进行分类。
    4.已有的支持向量机分类算法分类效率比较高,然而在数据记录增加的情况下,即使使用了核函数,线性svm需要较大的计算和存储成本,因此传统基于svm分类方法的性能还存在很大的改进空间。利用核函数的特征变换方法是非线性的,在大规模数据的分类时,会产生较大的存储空间,降低计算速度,使用随机傅里叶变换可以做到在大规模数据分类时,特征变换依旧是线性的。使用随机傅里叶特征变换的方法,在准确率较高的同时降低了复杂度。
    5.本发明的目的是致力于解决上述信道测量信号分类复杂度高、设备识别率低的缺陷,提出了一种信道测量分类方法。


    技术实现要素:

    6.本发明的目的在于针对小型无线电接收设备存在与否情况下受信道干扰以及设备识别率低的技术缺陷,提出了一种基于信道测量的分类方法。
    7.为达到上述目的,采取如下技术方案:
    8.所述基于信道测量的分类方法,依托的环境反向散射通信系统包括发射机、接收机及小型射频收发设备;发射机通过发射天线发送pn码以及正弦波两种信号;接收机通过接收天线接收经过小型射频收发设备反射、吸收后的信号;
    9.所述基于信道测量的分类方法依托的系统包括发射机、接收机以及小型射频收发设备;
    10.所述基于信道测量的分类方法,包括如下步骤:
    11.步骤1、接收机接收发射机发送的信号;
    12.其中,接收机接收的信号包括不同极化角度以及小型射频收发设备存在与否的信号,极化角度包括
    ±
    90
    °

    ±
    45
    °
    以及0
    °

    13.步骤2、对步骤1接收的信号进行特征提取,分别得到特征集x和特征测试集x
    t

    14.其中,特征提取方法,包括但不限于:对接收信号进行小波熵以及自相关系数提取;
    15.步骤3、使用特征集x进行训练,得到训练好的分类模型参数;
    16.其中,分类模型参数包括权重向量和分离间隔;且权重向量特征空间的分离超平面的法向量,记为w;分离间隔为分离面和坐标原点的间隔,记为ρ;
    17.步骤3.1、对特征集x进行随机傅里叶特征变换,得到随机傅里叶特征变换后的特征集z;
    18.其中,随机傅里叶特征变换计算公式为式(1):
    [0019][0020]
    其中,xi为信号特征集x的数据,且特征维数为d,数据个数为n;p(
    ·
    )为高斯分布,σ为核带宽,hu(d
    ×
    1)为随机生成的矩阵;u=1,

    ,d
    rf
    ;d
    rf
    为随机傅里叶特征变换的维度,z(xi)为特征集z中xi的对应项;
    [0021]
    步骤3.2、从随机傅里叶特征变换后的特征集z中随机选择一个数据点作为初始权重向量w;
    [0022]
    步骤3.3、基于w通过黄金分割线搜索计算分离间隔ρ;
    [0023]
    步骤3.4、对所有计算wz(xj)-ρ小于0的数据点z(xj)求平均后得到权重向量wm;
    [0024]
    其中,xj为信号特征集x的数据,z(xj)为特征集z中xj的对应项;
    [0025]
    步骤3.5、通过随机梯度下降方法计算w和wm间新的权重向量w
    new
    ,再用w
    new
    更新权重向量w;
    [0026]
    其中,用w
    new
    更新权重向量w,即令w=w
    new

    [0027]
    步骤3.6、重复步骤3.3至步骤3.5,直至k次迭代后w基本趋于稳定,记w为最优权重向量w
    *
    ,并根据黄金分割线搜索计算出最优权重向量w
    *
    对应的最优分离间隔ρ
    *

    [0028]
    其中,k的取值范围大于15小于50,基本趋于稳定的条件为w的模差值小于0.0001;
    [0029]
    其中,最优权重向量w
    *
    以及最优分离间隔ρ
    *
    为训练好的模型参数;
    [0030]
    步骤4、对特征测试集x
    t
    进行分类,具体包括如下子步骤:
    [0031]
    步骤4.1、对特征测试集x
    t
    进行随机傅里叶特征变换,根据公式(1)得到随机傅里叶特征变换,得到测试集z
    t

    [0032]
    步骤4.2、根据步骤3训练得到的w
    *
    、ρ
    *
    计算w
    *zt
    (x
    ti
    )-ρ
    *
    的结果,记为p;
    [0033]
    其中,p的维数为1
    ×nt
    ;n
    t
    为特征测试集x
    t
    中元素的数量;x
    ti
    为特征测试集x
    t
    中的第i个元素,z
    t
    (x
    ti
    )为x
    ti
    进行随机傅里叶特征变换后测试集z
    t
    中的元素;
    [0034]
    步骤4.3、根据步骤4.2得到p的元素值进行判断,具体为:若p(v)≥0,则特征测试集x
    t
    中第v个元素对应的待分类数据与训练集数据是同类;否则,若p(v)<0,则特征测试集
    x
    t
    中第v个元素对应的待分类数据与训练集数据是异类;
    [0035]
    其中,v的取值范围为1到n
    t

    [0036]
    至此,经过步骤1到步骤4,就完成了一种基于信道测量的分类方法。
    [0037]
    有益效果
    [0038]
    本发明所述的一种基于信道测量的分类方法,与现有分类方法相比,具有如下有益效果:
    [0039]
    1.所述方法因避免使用维度无限的核函数,使得算法的时间复杂度和空间复杂度低;
    [0040]
    2.所述方法在小样本数据条件下,依然能保证高的识别准确率;
    [0041]
    3.所述方法对高维及非线性分类问题具有很好的泛化性;
    [0042]
    4.所述方法使用小波熵、自相关系数作为特征,在分类时达到了较高的分辨率,且能用于大多数应用场景信道接收信号进行特征提取。
    附图说明
    [0043]
    图1是一种基于信道测量的分类方法的流程图;
    [0044]
    图2是一种基于信道测量的分类方法信道接收信号实验场景图;
    [0045]
    图3是一种基于信道测量的分类方法针对11类信道情况的平均分辨率;
    [0046]
    图4是一种基于信道测量的分类方法试验数据c-svm分类结果。
    具体实施方式
    [0047]
    下面结合附图和实施例对本发明所述的一种基于信道测量的分类方法做进一步说明和详细描述。
    [0048]
    实施例1
    [0049]
    本实施例详细阐述了本发明一种基于信道测量的分类方法具体实施时的分类结果,旨在验证一种基于信道测量的分类方法的分类效果。
    [0050]
    该实施例的试验中共测量无源标签1~5、含能量收集器的无源标签1~5和纯信道11种情况。发射信号的功率为0dbm,发射信号为pn码,码元速率为100khz,测量时,移动接收天线的位置,分别测量接收天线和发射天线相距0.6m、1.2m、1.8m、2.4m、3.0m、3.6m时的信道接收信号,每个距离测量5种极化角度的接收信号,极化角度包括0
    °
    、45
    °
    、90
    °
    、-45
    °
    和-90
    °

    [0051]
    测量完毕后进行信号分类,图1为一种基于信道测量的分类方法的流程图,具体分类步骤如下:
    [0052]
    步骤1、接收机接收发射机发送的信号;
    [0053]
    图2为该实施例具体接收信号的试验场景,其中,接收信号包括天线间不同极化角度以及小型射频收发设备存在与否的信号,极化角度包括
    ±
    90
    °

    ±
    45
    °
    以及0
    °
    ,在该实施例中,情况包括无源标签1~5、含能量收集器的无源标签1~5和纯信道,共要进行11次训练;
    [0054]
    步骤2、对接收信号进行特征提取,得到特征集x;
    [0055]
    其中,特征包括:接收信号的小波熵、接收信号的自相关系数;
    [0056]
    在该实施例中,取自相关系数前1000点作为特征;同时对接收信号进行4层级的小
    波分解,对分解后的小波信号得到幅度模值平方后计算熵值得到小波熵。
    [0057]
    步骤3、使用特征集x进行训练,模型参数包括权重向量w和分离间隔ρ;
    [0058]
    其中,w为特征空间的分离超平面的法向量,ρ为分离面和坐标原点的间隔;
    [0059]
    在该实施例中,含标签的信道测量数据的训练集包括500个样本点,纯信道的训练集包括400个样本点。
    [0060]
    步骤3.1、对特征集x进行随机傅里叶特征变换,得到随机傅里叶特征变换后的特征集z;
    [0061]
    其中,随机傅里叶特征变换计算公式为式(1):
    [0062][0063]
    其中,xi(d
    ×
    n)为信号特征集x的数据,d为特征维数,n为数据个数。p(
    ·
    )为高斯分布,σ为核带宽,hu(d
    ×
    1)为随机生成的矩阵;u=1,

    ,d
    rf
    ;d
    rf
    为随机傅里叶特征变换的维度,z(xi)为特征集z中xi的对应项;
    [0064]
    步骤3.2、从随机傅里叶特征变换结果已经进行傅里叶随机变换后的数据集合z中随机选择一个数据点z(xi)作为初始权重向量w;
    [0065]
    步骤3.3、通过黄金分割线搜索计算分离间隔ρ;
    [0066]
    步骤3.4、对所有计算wz(xi)-ρ小于0的数据点z(xi)求平均后得到权重向量wm;
    [0067]
    步骤3.5、通过随机梯度下降方法计算w和wm间新的权重向量w
    new
    ,记为新的权重向量w;
    [0068]
    步骤3.6、重复步骤3.3至步骤3.5,直至k次迭代后w基本趋于稳定,记w为最优的权重向量w
    *
    ,根据黄金分割线搜索计算出对应的最优分离间隔ρ
    *

    [0069]
    其中,k的取值范围大于15小于30时w能够趋于稳定,趋于稳定的条件为w的模差值小于0.0001,在该实施例中,通过多次训练,发现在k为25时,w的模差值小于0.000093,视为w已经稳定;
    [0070]
    步骤4、对接收信号进行分类,具体包括如下子步骤:
    [0071]
    接收机接收发射机发送出来的信号,求接收信号的小波熵和自相关系数作为特征得到特征测试集x
    t

    [0072]
    该实施例中11种情况的测试集均包括300个测试样本点,和训练集的比例约为60%。
    [0073]
    步骤4.1、对特征测试集x
    t
    进行随机傅里叶特征变换,根据公式(1)得到随机傅里叶特征变换的结果z
    t

    [0074]
    步骤4.2、根据步骤3训练得到的w
    *
    、ρ
    *
    计算w
    *zt
    (x
    ti
    )-ρ
    *
    的结果进行分类;
    [0075]
    其中,当结果大于等于0的信号即为该类,在该实施例中,使用11次训练后得到的11组w
    *
    、ρ
    *
    进行分类,图3为11种情况的平均分辨率结果。
    [0076]
    图3显示,使用自相关系数和小波熵作为特征,以实际信道测量数据进行测试,11种信道情况之间的识别率都较高,达到了93%以上,得到了较好的分辨结果。
    [0077]
    图4为该试验得到的测试数据集使用c-svm的分辨率结果,本发明的一种基于信道测量的分类方法的分类结果与之相比,在不使用核函数的情况下,较低维度的特征空间映射降低了数据训练的计算复杂度,同时达到了同等的分类效果。
    [0078]
    以上所述为本发明的较佳实施例而已,本发明不应该局限于该实施例和附图所公开的内容。凡是不脱离本发明所公开的精神下完成的等效或修改,都落入本发明保护的范围。

    技术特征:
    1.一种基于信道测量的分类方法依托的环境反向散射通信系统包括发射机、接收机及小型射频收发设备;发射机通过发射天线发送pn码以及正弦波两种信号;接收机通过接收天线接收经过小型射频收发设备反射、吸收后的信号,其特征在于:所述方法,包括如下步骤:步骤1、接收机接收发射机发送的信号;步骤2、对步骤1接收的信号进行特征提取,分别得到特征集x和特征测试集x
    t
    ;步骤3、使用特征集x进行训练,得到训练好的分类模型参数;其中,分类模型参数包括权重向量和分离间隔,分别记为w和ρ;步骤3.1、对特征集x进行随机傅里叶特征变换,得到随机傅里叶特征变换后的特征集z;步骤3.2、从随机傅里叶特征变换后的特征集z中随机选择一个数据点作为初始权重向量w;步骤3.3、基于w通过黄金分割线搜索计算分离间隔ρ;步骤3.4、对所有计算wz(x
    j
    )-ρ小于0的数据点z(x
    j
    )求平均后得到权重向量w
    m
    ;其中,x
    j
    为信号特征集x的数据,z(x
    j
    )为特征集z中x
    j
    的对应项;步骤3.5、通过随机梯度下降方法计算w和w
    m
    间新的权重向量w
    new
    ,再用w
    new
    更新权重向量w;步骤3.6、重复步骤3.3至步骤3.5,直至k次迭代后w基本趋于稳定,记w为最优权重向量w
    *
    ,并根据黄金分割线搜索计算出最优权重向量w
    *
    对应的最优分离间隔ρ
    *
    ;其中,最优权重向量w
    *
    以及最优分离间隔ρ
    *
    为训练好的模型参数;步骤4、对特征测试集x
    t
    进行随机傅里叶变换并进行分类。2.依据权利要求1所述的一种基于信道测量的分类方法,其特征在于:步骤1中,接收机接收的信号包括不同极化角度以及小型射频收发设备存在与否的信号,极化角度包括
    ±
    90
    °

    ±
    45
    °
    以及0
    °
    。3.依据权利要求2所述的一种基于信道测量的分类方法,其特征在于:步骤2中,特征提取方法,包括但不限于:对接收信号进行小波熵以及自相关系数提取。4.依据权利要求3所述的一种基于信道测量的分类方法,其特征在于:步骤3中的权重向量特征空间的分离超平面的法向量;分离间隔为分离面和坐标原点的间隔。5.依据权利要求4所述的一种基于信道测量的分类方法,其特征在于:步骤3.1中,随机傅里叶特征变换计算公式为式(1):其中,x
    i
    为信号特征集x的数据,且特征维数为d,数据个数为n;p(
    ·
    )为高斯分布,σ为核带宽,h
    u
    (d
    ×
    1)为随机生成的矩阵;u=1,

    ,d
    rf
    ;d
    rf
    为随机傅里叶特征变换的维度,z(x
    i
    )为
    特征集z中x
    i
    的对应项。6.依据权利要求5所述的一种基于信道测量的分类方法,其特征在于:步骤3.5中,用w
    new
    更新权重向量w,即令w=w
    new
    。7.依据权利要求6所述的一种基于信道测量的分类方法,其特征在于:步骤3.6中,k的取值范围大于15小于50,基本趋于稳定的条件为w的模差值小于0.0001。8.依据权利要求7所述的一种基于信道测量的分类方法,其特征在于:步骤4,具体包括如下子步骤:步骤4.1、对特征测试集x
    t
    进行随机傅里叶特征变换,根据公式(1)得到随机傅里叶特征变换,得到测试集z
    t
    ;步骤4.2、根据步骤3训练得到的w
    *
    、ρ
    *
    计算w
    *
    z
    t
    (x
    ti
    )-ρ
    *
    的结果,记为p;其中,x
    ti
    为特征测试集x
    t
    中的第i个元素,z
    t
    (x
    ti
    )为x
    ti
    进行随机傅里叶特征变换后测试集z
    t
    中的元素;步骤4.3、根据步骤4.2得到p的元素值进行判断,具体为:若p(v)≥0,则特征测试集x
    t
    中第v个元素对应的待分类数据与训练集数据是同类;否则,若p(v)<0,则特征测试集x
    t
    中第v个元素对应的待分类数据与训练集数据是异类。9.依据权利要求8所述的一种基于信道测量的分类方法,其特征在于:步骤4.2中,p的维数为1
    ×
    n
    t
    ;n
    t
    为特征测试集x
    t
    中元素的数量。10.依据权利要求9所述的一种基于信道测量的分类方法,其特征在于:步骤4.3中,v的取值范围为1到n
    t


    技术总结
    本发明涉及一种基于信道测量的分类方法,属于信道识别环境反向散射通信以及机器学习技术领域。依托的系统包括发射机、接收机及小型射频收发设备;发射机发送PN码以及正弦波;接收机接收经小型射频收发设备反射、吸收后的信号;所述方法,包括:步骤1、接收机接收发射机发送的信号;步骤2、对接收的信号进行特征提取,分别得到特征集X和特征测试集X


    技术研发人员:卢继华 吴编 冯立辉 周正阳
    受保护的技术使用者:北京理工大学
    技术研发日:2021.09.16
    技术公布日:2022/5/25
    转载请注明原文地址:https://tc.8miu.com/read-11477.html

    最新回复(0)