基于改进神经网络的态势感知方法和可读存储介质与流程

    专利查询2022-12-01  114



    1.本发明涉及网络安全领域,更具体地说,涉及一种基于改进神经网络的态势感知方法和可读存储介质。


    背景技术:

    2.态势感知的概念最早由安德斯雷(endsley)构建,包括预测(perception)、理解(comprehension)、和认知(projection)三个层次。随着网络空间安全重要性的不断提高,网络安全的态势感知研究与应用越来越受到关注。针对复杂的网络系统,目前采用的网络安全的态势感知通常是综合考虑系统的整体安全指标或单独考虑子系统的安全指标,对各指标进行关键有用信息的感知及提取、对各指标对安全性影响过程的理解、最终对系统安全性作出预测。
    3.然而,单纯的某一层面的评估不能有效地对系统安全进行评估。只考虑整体的安全指标会忽视子系统的综合影响,只考虑子系统的安全指标又忽视了系统整体面临的安全威胁。


    技术实现要素:

    4.本发明要解决的技术问题在于,针对现有技术的上述缺陷,提供一种基于改进神经网络的态势感知方法和计算机可读存储介质,全面综合考虑系统整体影响指标与局部影响指标,不仅是将这些指标进行简单的汇总和叠加,而是根据不同影响指标的内在联系设置不同的权重;并结合神经网络模型对安全等级进行预测,从而全面有效地对系统安全性做出准确预测。
    5.本发明解决其技术问题所采用的技术方案是:构造一种基于改进神经网络的态势感知方法,包括以下步骤:感知步骤,包括获取多个系统整体影响指标及其权重,以及获取每个子系统的多个一级指标和二级指标;理解步骤,包括基于所述系统整体影响指标及其权重确定第一系统安全性,基于所述一级指标和所述二级指标确定第二系统安全性,以及综合所述第一系统安全性和所述第二系统安全性获得系统安全等级;预测步骤,包括构建初级神经网络,将所述系统整体影响指标、所述二级指标和所述系统安全等级输入所述初级神经网络进行训练以获得神经网络态势感知预测模型,并基于所述神经网络态势感知预测模型进行预测。
    6.在所述的基于改进神经网络的态势感知方法中,所述获取多个系统整体影响指标及其权重包括:对系统进行数据采集并确定s个系统整体影响指标;归一化处理所述系统整体影响指标,并获得每个所述系统整体影响指标的权重,其中s为正整数。
    7.在所述的基于改进神经网络的态势感知方法中,所述获取每个子系统的多个一级指标和二级指标包括:对所述系统的每个子系统进行数据采集并确定每个子系统的m个一级指标以及每个一级指标对应的n个二级指标,其中n和m均为正整数;归一化处理所有的所述二级指标和所述一级指标并获得m个一级指标权重和每个一级指标对应的m个二级指标的n个二级指标权重。
    8.在所述的基于改进神经网络的态势感知方法中,所述基于所述系统整体影响指标及其权重确定第一系统安全性包括:挑选p个训练样本,通过对所述系统整体影响指标进行评估,确定第一系统安全性:,其中表示所述第一系统安全性,表示系统整体影响指标的影响度,p为正整数。
    9.在所述的基于改进神经网络的态势感知方法中,所述基于所述一级指标和所述二级指标确定第二系统安全性包括:根据每个一级指标对应的n个二级指标的影响度以及其二级指标权重,判定每个一级指标的影响度,其中表示一级指标的影响度,表示二级指标的影响度;基于所述一级指标的影响度以及其一级指标权重判定每个子系统的影响度;基于每个子系统的影响度以及其权重确定所述第二系统安全性。
    10.在所述的基于改进神经网络的态势感知方法中,所述综合所述第一系统安全性和所述第二系统安全性获得系统安全等级包括:基于所述第一系统安全性、所述第二系统安全性、所述第一系统安全性的权重和第二系统安全性的权重得到系统综合安全性;基于所述系统综合安全性和打分标准,获得所述系统安全等级。
    11.在所述的基于改进神经网络的态势感知方法中,所述构建初级神经网络包括局部输入模块、整体输入模块、融合层和输出层,所述局部输入模块包括输入层、第一隐藏层、第二隐藏层、第三隐藏层、第四隐藏层、第五隐藏层和第六隐藏层,所述整体输入模块包括输入层、第一隐藏层和第二隐藏层。
    12.在所述的基于改进神经网络的态势感知方法中,所述局部输入模块的输入层、第
    二隐藏层、第三隐藏层的节点个数分别对应二级指标个数,一级指标个数和子系统个数,所述整体输入模块的输入层的节点个数对应所述系统整体影响指标的个数。
    13.在所述的基于改进神经网络的态势感知方法中,所述将所述系统整体影响指标、所述二级指标和所述系统安全等级输入所述初级神经网络进行训练以获得神经网络态势感知预测模型包括:选择p个训练样本,将其对应的所述系统整体影响指标、所述二级指标和所述系统安全等级输入所述初级神经网络进行多次训练以获得神经网络态势感知预测模型;挑选q个测试样本,将所述测试样本通过所述神经网络态势感知预测模型获得q个预测值;针对每个测试样本执行所述感知步骤和所述理解步骤以获得q个实际值;比较所述预测值和所述实际值以判定所述神经网络态势感知预测模型是否成熟。
    14.本发明解决其技术问题采用的再一技术方案是,构造一种计算机可读存储介质,所述计算机可读存储介质由处理器执行时,实施所述的基于改进神经网络的态势感知方法。
    15.本发明通过全面综合考虑系统整体影响指标与局部影响指标,不仅是将这些指标进行简单的汇总和叠加,而是根据不同影响指标的内在联系设置不同的权重;并结合神经网络模型对安全等级进行预测,从而全面有效地对系统安全性做出准确预测。
    附图说明
    16.下面将结合附图及实施例对本发明作进一步说明,附图中:图1是本发明的基于改进神经网络的态势感知方法的优选实施例的流程图;图2是本发明的基于改进神经网络的态势感知方法的优选实施例的打分标准;图3是本发明的基于改进神经网络的态势感知方法的优选实施例的神经网络模型的简明示意图;图4是本发明的基于改进神经网络的态势感知方法的优选实施例的神经网络模型的详细示意图。
    具体实施方式
    17.为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
    18.本发明涉及基于改进神经网络的态势感知方法,包括感知步骤,包括获取多个系统整体影响指标及其权重,以及获取每个子系统的多个一级指标和二级指标;理解步骤,包括基于所述系统整体影响指标及其权重确定第一系统安全性,基于所述一级指标和所述二级指标确定第二系统安全性,以及综合所述第一系统安全性和所述第二系统安全性获得系统安全等级;预测步骤,包括构建初级神经网络,将所述系统整体影响指标、所述二级指标和所述系统安全等级输入所述初级神经网络进行训练以获得神经网络态势感知预测模型,并基于所述神经网络态势感知预测模型进行预测。本发明通过全面综合考虑系统整体影响指标与局部影响指标,不仅是将这些指标进行简单的汇总和叠加,而是根据不同影响指标
    的内在联系设置不同的权重;并结合神经网络模型对安全等级进行预测,从而全面有效地对系统安全性做出准确预测。
    19.图1是本发明的基于改进神经网络的态势感知方法的优选实施例的流程图。如图1所示,本发明的基于改进神经网络的态势感知方法包括感知步骤、理解步骤和预测步骤。
    20.所述感知步骤包括获取多个系统整体影响指标及其权重,以及获取每个子系统的多个一级指标和二级指标。
    21.具体的所述获取多个系统整体影响指标及其权重包括对系统进行数据采集并确定s个系统整体影响指标;归一化处理所述系统整体影响指标,并获得每个所述系统整体影响指标的权重,其中s为正整数。
    22.所述获取每个子系统的多个一级指标和二级指标包括对所述系统的每个子系统进行数据采集并确定每个子系统的m个一级指标以及每个一级指标对应的n个二级指标,其中n和m均为正整数;归一化处理所有的所述二级指标和所述一级指标并获得m个一级指标权重和每个一级指标对应的m个二级指标的n个二级指标权重。
    23.所述理解步骤包括基于所述系统整体影响指标及其权重确定第一系统安全性,基于所述一级指标和所述二级指标确定第二系统安全性,以及综合所述第一系统安全性和所述第二系统安全性获得系统安全等级。
    24.具体地,所述获取多个系统整体影响指标及其权重包括对系统进行数据采集并确定s个系统整体影响指标;归一化处理所述系统整体影响指标,并获得每个所述系统整体影响指标的权重,其中s为正整数。
    25.所述获取每个子系统的多个一级指标和二级指标包括对所述系统的每个子系统进行数据采集并确定每个子系统的m个一级指标以及每个一级指标对应的n个二级指标,其中n和m均为正整数;归一化处理所有的所述二级指标和所述一级指标并获得m个一级指标权重和每个一级指标对应的m个二级指标的n个二级指标权重。
    26.所述基于所述系统整体影响指标及其权重确定第一系统安全性包括挑选p个训练样本,通过对所述系统整体影响指标进行评估,确定第一系统安全性:,其中表示所述第一系统安全性,表示系统整体影响指标的影响度,p为正整数。
    27.所述基于所述一级指标和所述二级指标确定第二系统安全性包括:根据每个一级指标对应的n个二级指标的影响度以及其二级指标权重,判定每个一级指标的影响度,其中表示一级指标的影响度,
    表示二级指标的影响度;基于所述一级指标的影响度以及其一级指标权重判定每个子系统的影响度;基于每个子系统的影响度以及其权重确定所述第二系统安全性。
    28.所述综合所述第一系统安全性和所述第二系统安全性获得系统安全等级包括:基于所述第一系统安全性、所述第二系统安全性、所述第一系统安全性的权重和第二系统安全性的权重得到系统综合安全性;基于所述系统综合安全性和打分标准,获得所述系统安全等级。
    29.所述预测步骤包括构建初级神经网络,将所述系统整体影响指标、所述二级指标和所述系统安全等级输入所述初级神经网络进行训练以获得神经网络态势感知预测模型,并基于所述神经网络态势感知预测模型进行预测。
    30.优选的,所述构建初级神经网络包括局部输入模块、整体输入模块、融合层和输出层,所述局部输入模块包括输入层、第一隐藏层、第二隐藏层、第三隐藏层、第四隐藏层、第五隐藏层和第六隐藏层,所述整体输入模块包括输入层、第一隐藏层和第二隐藏层。所述局部输入模块的输入层、第二隐藏层、第三隐藏层的节点个数分别对应二级指标个数,一级指标个数和子系统个数,所述整体输入模块的输入层的节点个数对应所述系统整体影响指标的个数。
    31.所述将所述系统整体影响指标、所述二级指标和所述系统安全等级输入所述初级神经网络进行训练以获得神经网络态势感知预测模型包括选择p个训练样本,将其对应的所述系统整体影响指标、所述二级指标和所述系统安全等级输入所述初级神经网络进行多次训练以获得神经网络态势感知预测模型;挑选q个测试样本,将所述测试样本通过所述神经网络态势感知预测模型获得q个预测值;针对每个测试样本执行所述感知步骤和所述理解步骤以获得q个实际值;比较所述预测值和所述实际值以判定所述神经网络态势感知预测模型是否成熟。
    32.本发明通过全面综合考虑系统整体影响指标与局部影响指标,不仅是将这些指标进行简单的汇总和叠加,而是根据不同影响指标的内在联系设置不同的权重;并结合神经网络模型对安全等级进行预测,从而全面有效地对系统安全性做出准确预测。
    33.为了更好地说明本发明,下面将基于系统a对本发明的优选实施例说明如下。该系统a具有l个子系统,即子系统,l取值为正整数。
    34.首先执行感知步骤。在感知步骤中,对系统a在某个连续时间段内进行数据采集,筛选有用信息,去除无关影响,确定s个系统整体影响指标;归一化处理所述系统整体影响指标,使得每个系统整体影响指标统一映射到[0,1]区间上,并获得每个所述系统整体影响指标的权重,其中s为正整数。
    [0035]
    同样地,在感知步骤中,还对系统a的每个子系统在某个连续
    时间段内进行数据采集,筛选有用信息,去除无关影响,最后确定每个子系统的m个一级指标以及每个一级指标对应的n个二级指标,其中n和m均为正整数。为了消除不同指标之间的量纲和数量级的影响,对所有的二级指标分别进行归一化处理,使其统一映射到的区间上,并获得m个一级指标权重和每个一级指标对应的m个二级指标的n个二级指标权重。
    [0036]
    接着执行理解步骤。在理解步骤中,首先挑选p个训练样本,通过对所述系统整体影响指标进行评估,确定第一系统安全性:,其中表示所述第一系统安全性,表示系统整体影响指标的影响度,p为正整数。
    [0037]
    然后根据每个一级指标对应的n个二级指标的影响度以及其二级指标权重,判定每个一级指标的影响度,其中表示一级指标的影响度,表示二级指标的影响度。
    [0038]
    基于所述一级指标的影响度以及其一级指标权重判定每个子系统的影响度;基于每个子系统的影响度以及其权重确定所述第二系统安全性。
    [0039]
    其中p()为指标相对于其上一级指标/系统的影响度。p1()表示安全性。
    [0040]
    基于所述第一系统安全性、所述第二系统安全性、所述第一系统安全性的权重和第二系统安全性的权重得到系统综合安全性。这样,在评估过程中不仅需要考虑多种因素带来的影响,还需要考虑各种影响之间的权重关系,因此可以更为全面准确地进行评估和预测。
    [0041]
    基于所述系统综合安全性和图2所示的专家打分标准,获得所述系统安全等级。在此,图2中的e1-e4的打分标准可以采用任何已知的现有打分标准。
    [0042]
    最后执行预测步骤。在预测步骤中,首先构建初级神经网络。如图3所示,所述构建初级神经网络包括局部输入模块、整体输入模块、融合层和输出层,所述局部输入模块包括输入层、第一隐藏层、第二隐藏层、第三隐藏层、第四隐藏层、第五隐藏层和第六隐藏层,所述整体输入模块包括输入层、第一隐藏层和第二隐藏层。
    [0043]
    如图3-4所示,所述局部输入模块的输入层对应个二级指标设置个节点。第一隐藏层设置个节点。第二隐藏层对应个一级指标设置个节点。第三隐藏层设置个节点。第
    四隐藏层对应l个子系统设置l个节点,第五隐藏层设置个节点,第六隐藏层设置一个节点(通过二级指标得到的第一系统安全性)。所述整体模块输入层对应个系统整体影响指标设置个节点,第一隐藏层设置节点,第二隐藏层设置一个节点(通过系统整体影响指标得到的第二系统安全性。
    [0044]
    将局部模块得到的通过二级指标得到系统安全性和整体模块得到的系统整体安全性进行融合,由此得到系统综合安全等级。即基于所述第一系统安全性、所述第二系统安全性、所述第一系统安全性的权重和第二系统安全性的权重得到系统综合安全性。
    [0045]
    基于所述系统综合安全性和图2所示的专家打分标准,获得所述系统安全等级。在此,图2中的e1-e4的打分标准可以采用任何已知的现有打分标准。
    [0046]
    然后,选择p个训练样本,将其对应的所述系统整体影响指标、所述二级指标和所述系统安全等级输入所述初级神经网络进行多次训练以获得神经网络态势感知预测模型;挑选q个测试样本,将所述测试样本通过所述神经网络态势感知预测模型获得q个预测值;针对每个测试样本执行所述感知步骤和所述理解步骤以获得q个实际值;比较所述预测值和所述实际值以判定所述神经网络态势感知预测模型是否成熟。其中p和q分别为正整数,训练样本可以是任何适合的包括多个子系统的系统。进一步的,在本发明中,除非另有定义外,表述数量的参数取值均为正整数。
    [0047]
    在判定所述神经网络态势感知预测模型成熟后,可以将其用于后续的系统安全性判断。本发明通过全面综合考虑系统整体影响指标与局部影响指标,不仅是将这些指标进行简单的汇总和叠加,而是根据不同影响指标的内在联系设置不同的权重;并结合神经网络模型对安全等级进行预测,从而全面有效地对系统安全性做出准确预测。
    [0048]
    本发明的进一步的优选实施例还涉及一种计算机可读存储介质,所述计算机可读存储介质由处理器执行时,实施所述的基于改进神经网络的态势感知方法。
    [0049]
    因此,本发明可以通过硬件、软件或者软、硬件结合来实现。本发明可以在至少一个计算机系统中以集中方式实现,或者由分布在几个互连的计算机系统中的不同部分以分散方式实现。任何可以实现本发明方法的计算机系统或其它设备都是可适用的。常用软硬件的结合可以是安装有计算机程序的通用计算机系统,通过安装和执行程序控制计算机系统,使其按本发明方法运行。
    [0050]
    本发明还可以通过计算机程序产品进行实施,程序包含能够实现本发明方法的全部特征,当其安装到计算机系统中时,可以实现本发明的方法。本文件中的计算机程序所指的是:可以采用任何程序语言、代码或符号编写的一组指令的任何表达式,该指令组使系统具有信息处理能力,以直接实现特定功能,或在进行下述一个或两个步骤之后实现特定功能:a)转换成其它语言、编码或符号;b)以不同的格式再现。
    [0051]
    虽然本发明是通过具体实施例进行说明的,本领域技术人员应当明白,在不脱离本发明范围的情况下,还可以对本发明进行各种变换及等同替代。另外,针对特定情形或材料,可以对本发明做各种修改,而不脱离本发明的范围。因此,本发明不局限于所公开的具体实施例,而应当包括落入本发明权利要求范围内的全部实施方式。
    [0052]
    以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精
    神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

    技术特征:
    1.一种基于改进神经网络的态势感知方法,其特征在于,包括以下步骤:感知步骤,包括获取多个系统整体影响指标及其权重,以及获取每个子系统的多个一级指标和二级指标;理解步骤,包括基于所述系统整体影响指标及其权重确定第一系统安全性,基于所述一级指标和所述二级指标确定第二系统安全性,以及综合所述第一系统安全性和所述第二系统安全性获得系统安全等级;预测步骤,包括构建初级神经网络,将所述系统整体影响指标、所述二级指标和所述系统安全等级输入所述初级神经网络进行训练以获得神经网络态势感知预测模型,并基于所述神经网络态势感知预测模型进行预测。2.根据权利要求1所述的基于改进神经网络的态势感知方法,其特征在于,所述获取多个系统整体影响指标及其权重包括:对系统进行数据采集并确定s个系统整体影响指标;归一化处理所述系统整体影响指标,并获得每个所述系统整体影响指标的权重,其中s为正整数。3.根据权利要求2所述的基于改进神经网络的态势感知方法,其特征在于,所述获取每个子系统的多个一级指标和二级指标包括:对所述系统的每个子系统进行数据采集并确定每个子系统的m个一级指标以及每个一级指标对应的n个二级指标,其中n和m均为正整数;归一化处理所有的所述二级指标和所述一级指标并获得m个一级指标权重和每个一级指标对应的m个二级指标的n个二级指标权重。4.根据权利要求3所述的基于改进神经网络的态势感知方法,其特征在于,所述基于所述系统整体影响指标及其权重确定第一系统安全性包括:挑选p个训练样本,通过对所述系统整体影响指标进行评估,确定第一系统安全性:,其中表示所述第一系统安全性,表示系统整体影响指标的影响度,p为正整数。5.根据权利要求4所述的基于改进神经网络的态势感知方法,其特征在于,所述基于所述一级指标和所述二级指标确定第二系统安全性包括:根据每个一级指标对应的n个二级指标的影响度以及其二级指标权重,判定每个一级指标的影响度,其中表示一级指标的影响度,表示二级指标的影响度;基于所述一级指标的影响度以及其一级指标权重判定每个子系统的影响度;
    基于每个子系统的影响度以及其权重确定所述第二系统安全性。6.根据权利要求5所述的基于改进神经网络的态势感知方法,其特征在于,所述综合所述第一系统安全性和所述第二系统安全性获得系统安全等级包括:基于所述第一系统安全性、所述第二系统安全性、所述第一系统安全性的权重和第二系统安全性的权重得到系统综合安全性;基于所述系统综合安全性和打分标准,获得所述系统安全等级。7.根据权利要求1-6中任意一项所述的基于改进神经网络的态势感知方法,其特征在于,所述构建初级神经网络包括局部输入模块、整体输入模块、融合层和输出层,所述局部输入模块包括输入层、第一隐藏层、第二隐藏层、第三隐藏层、第四隐藏层、第五隐藏层和第六隐藏层,所述整体输入模块包括输入层、第一隐藏层和第二隐藏层。8.根据权利要求7所述的基于改进神经网络的态势感知方法,其特征在于,所述局部输入模块的输入层、第二隐藏层、第三隐藏层的节点个数分别对应二级指标个数,一级指标个数和子系统个数,所述整体输入模块的输入层的节点个数对应所述系统整体影响指标的个数。9.根据权利要求7所述的基于改进神经网络的态势感知方法,其特征在于,所述将所述系统整体影响指标、所述二级指标和所述系统安全等级输入所述初级神经网络进行训练以获得神经网络态势感知预测模型包括:选择p个训练样本,将其对应的所述系统整体影响指标、所述二级指标和所述系统安全等级输入所述初级神经网络进行多次训练以获得神经网络态势感知预测模型;挑选q个测试样本,将所述测试样本通过所述神经网络态势感知预测模型获得q个预测值;针对每个测试样本执行所述感知步骤和所述理解步骤以获得q个实际值;比较所述预测值和所述实际值以判定所述神经网络态势感知预测模型是否成熟。10.一种可读存储介质,其特征在于,所述可读存储介质由处理器执行时,实施根据权利要求1-9中任意一项所述的基于改进神经网络的态势感知方法。

    技术总结
    本发明涉及一种基于改进神经网络的态势感知方法和可读存储介质。所述方法包括:感知步骤,包括获取多个系统整体影响指标及其权重,以及获取每个子系统的多个一级指标和二级指标;理解步骤,包括基于所述系统整体影响指标及其权重确定第一系统安全性,基于所述一级指标和所述二级指标确定第二系统安全性,以及综合所述第一系统安全性和所述第二系统安全性获得系统安全等级;预测步骤,包括构建初级神经网络,将所述系统整体影响指标、所述二级指标和所述系统安全等级输入所述初级神经网络进行训练以获得神经网络态势感知预测模型,并基于所述神经网络态势感知预测模型进行预测。本发明能够全面有效地对系统安全性做出准确预测。确预测。确预测。


    技术研发人员:戚建淮 周杰 杜玲禧 宋晶
    受保护的技术使用者:深圳市永达电子信息股份有限公司
    技术研发日:2022.03.18
    技术公布日:2022/5/25
    转载请注明原文地址:https://tc.8miu.com/read-14095.html

    最新回复(0)