一种智能检测焊缝缺陷的机器人

    专利查询2022-12-03  99



    1.本实用新型属于检测机器人技术领域,尤其是一种智能检测焊缝缺陷的机器人。


    背景技术:

    2.焊缝缺陷的定期检测是保证产品焊接质量关键的一环,而产品的焊接质量又将直接影响到产品的使用性能。实际生产中如果没有及时发现焊缝缺陷,小则使设备损坏停工停产,大则造成灾难,因此要经常进行焊缝缺陷检测。
    3.大部分的工厂车间里一般会在固定周期内派质量检测人员进行焊缝缺陷的检测。虽然专业的质量检测人员能出色地检测出焊缝缺陷,但是当检测的产品过多时,质量检测人员易出现生理疲劳和视觉疲劳,大大地影响了检测的进程,降低了检测的准确率。另一方面,采用质量检测人员人工检测焊缝缺陷时也需支付巨额的检测费用。
    4.为了解决现有技术存在的问题,提供了一种具备焊缝缺陷识别,实时定位,自动行驶,定点作业的机器人。


    技术实现要素:

    5.本实用新型是为了克服上述现有技术中的缺陷,提供一种具备焊缝缺陷识别,实时定位,自动行驶,定点作业的智能检测焊缝缺陷的机器人。
    6.为了达到以上目的,本实用新型所采用的技术方案是:一种智能检测焊缝缺陷的机器人,包括控制机构和机器人本体,所述机器人本体的顶部布设有定位结构,底部布设有脚轮,侧面布设有图像采集结构,中部布设伸缩结构,所述控制机构和机器人本体之间电路连接。
    7.作为本实用新型的一种优选方案,所述定位结构包括安装底座、旋转支撑柱、圆柱活塞和lds激光距离传感器,旋转支撑柱的一端转动连接在安装底座上,旋转支撑柱的另一端安装圆柱活塞,圆柱活塞上安装有lds激光距离传感器。
    8.作为本实用新型的一种优选方案,所述图像采集结构包括支撑块,支撑块通过纵向圆柱活塞连接承载柱的一端,承载柱的另一端通过竖向圆柱活塞连接支撑柱,支撑柱的端部布设有激光三维扫描仪。
    9.作为本实用新型的一种优选方案,所述支撑块和承载柱活动连接,承载柱和支撑柱活动连接。
    10.作为本实用新型的一种优选方案,所述承载柱、支撑柱转动时互不干涉。
    11.作为本实用新型的一种优选方案,所述脚轮左右对称布设在机器人本体底部。
    12.作为本实用新型的一种优选方案,所述机器人本体的另一侧面布设有充电结构,所述充电结构靠近机器人本体底部布设。
    13.作为本实用新型的一种优选方案,所述伸缩结构连接着机器人本体的上下两部部分。
    14.作为本实用新型的一种优选方案,所述控制机构包括上位机、单片机,上位机和单
    片机之间电路连接。
    15.作为本实用新型的一种优选方案,所述控制机构还包括集成插接件,集成插接件的一端与上位机、单片机电路连接,集成插接件的另一端与机器人本体电路连接。
    16.本实用新型的有益效果是:
    17.本实用新型即能通过定位结构实现机器人的实时定位,绕过障碍物,回到充电桩充电以及任务点定点;也能通过图像采集结构对原图像的焊缝进行缺陷识别,标注焊缝缺陷识别结果;底部设置的滚轮方便机器人稳定地在车间移动,伸缩结构能帮助机器人检测不同高度的焊缝缺陷。
    附图说明
    18.图1是本实用新型的结构示意图;
    19.图2是本实用新型机器人作业的流程图;
    20.图3是本实用新型检测焊缝缺陷的流程图;
    21.图中附图标记:控制机构1,机器人本体2,上位机11,单片机12,集成插接件13,定位结构21,脚轮22,图像采集结构23,伸缩结构24,充电结构25,安装底座211,旋转支撑柱212,圆柱活塞213,lds激光距离传感器214,支撑块231,纵向圆柱活塞232,承载柱233,竖向圆柱活塞234,支撑柱235,激光三维扫描仪236。
    具体实施方式
    22.下面结合附图对本实用新型实施例作详细说明。
    23.如图1-3所示,一种智能检测焊缝缺陷的机器人,包括控制机构1和机器人本体2,所述机器人本体2的顶部布设有定位结构21,底部布设有脚轮22,脚轮22左右对称布设在机器人本体2底部,方便机器人本体2稳定地在车间移动,侧面布设有图像采集结构23,中部布设伸缩结构24,所述控制机构1和机器人本体2之间电路连接。
    24.控制机构1包括上位机11、单片机12,上位机11和单片机12之间电路连接。控制机构1还包括集成插接件13,集成插接件13的一端与上位机11、单片机12电路连接,集成插接件13的另一端与机器人本体2电路连接。
    25.定位结构21包括安装底座211、旋转支撑柱212、圆柱活塞213和lds激光距离传感器214,旋转支撑柱212的一端转动连接在安装底座211上,旋转支撑柱212的另一端安装圆柱活塞213,圆柱活塞213上安装有lds激光距离传感器214。定位结构21采用lds激光距离传感器214收发光线,而lds激光距离传感器214在旋转支撑柱212、圆柱活塞213作用下实现360旋转,能准确扫描周边环境,根据测距进行自身定位并且采用slam算法,对机器人本体2的具体位置准确定位,还能实时将机器人本体2所在位置上报到上位机11构建出机器人本体2运行的车间地图。
    26.当然,定位结构21中的lds激光距离传感器214检测到前方有障碍物时,机器人本体2可以自动绕过前方障碍物。
    27.而根据上位机11构建出的车间地图,机器人本体2运动到指定机器位置前将发送一个工作信号给上位机11,提示上位机11到达指定地点可以开始检测。
    28.图像采集结构23包括支撑块231,支撑块231通过纵向圆柱活塞232连接承载柱233
    的一端,承载柱233的另一端通过竖向圆柱活塞234连接支撑柱235,支撑柱235的端部布设有激光三维扫描仪236。支撑块231和承载柱233活动连接,承载柱233和支撑柱235活动连接。承载柱233、支撑柱235转动时互不干涉。
    29.到达指定地点时,图像采集结构23通过机器人本体2自带的便携式激光三维扫描仪236,沿着焊缝方向进行扫描,快速获取焊接部位的三维模型,然后将采集到的图像上传到上位机11中。上位机11收到上传的图像模型,对原图像进行图像填充、图像降噪、图像增强,得到待检测图像。随后对待检测图像进行分割,将分割好的图像进行焊缝缺陷识别,然后对上传原始图的机器人本体2位置进行定点,并标注焊缝缺陷识别结果。
    30.机器人本体2的另一侧面布设有充电结构25,充电结构25靠近机器人本体2底部布设。所述充电结构25在车间里设置的充电桩上充电,在定位结构21的作用下充电桩为确定的定位点,当机器人本体2电量不足时,通过定位结构21的定位作用确定机器人本体2的位置并将位置上报到上位机11,通过指令即可使机器人返航至充电桩进行充电。
    31.伸缩结构24连接着机器人本体2的上下两部部分,伸缩结构24可由内部气缸结构和外部可伸缩塑料组成,也可由内部丝杆结构和外部可伸缩塑料组成,伸缩结构24能帮助机器人检测不同高度的焊缝缺陷。
    32.具体实施一种智能检测焊缝缺陷的机器人:
    33.先启动上位机11开始界面初始化,再启动机器人,机器人的位置为上次使用完机器人后机器人选择充电的电桩位置。机器人启动时,如果出现启动失败的提示则需要人工进行故障检修,如果提示启动成功则可以开始使用机器人。
    34.机器人正常启动后,上位机11启动lds激光距离传感器214,并让其360
    °
    旋转,实时检测周边的环境。
    35.机器人在离开充电桩前,将充电桩设置成为定位点并将定位点上报到上位机11,上位机11收到定位点信息后将本次检测仪器的信息通过指令传达给机器人。
    36.机器人运作的定位结构21将根据测距进行自身定位并且使用slam算法,对机器人的具体位置进行准确定位,实时更新机器人所在位置并将这个信息传输到上位机11显示,如果是在一个陌生的车间工作,上位机11可以通过定位选择开始对陌生车间构建车间地图。需要注意的是只有当接收到关闭定位的指令时机器人的定位功能才会关闭。
    37.定位结构21中的当lds激光距离传感器214检测到前方有障碍物时,机器人可以自动绕过前方障碍物,需要注意的是只有当接收到关闭绕过障碍物功能时该功能才会关闭。机器人到达任务点后开始定点采集功能,自动停止并启动图像采集结构23中的激光三维扫描仪采集原图片。
    38.图像采集结构23启动激光扫描仪扫描焊缝,并将扫描到的焊缝原图像和仪器所在的地址信号传输到上位机11,完成传输后机器人2将恢复运动前往下一个设置好的任务工作点。
    39.上位机11接受焊缝图像后将进行图像填充、图像降噪、图像增强的处理,并将处理好的原图像生成为待检测图像,然后通过焊缝检测软件对待测图像进行检测,检测完的图像根据其是否有缺陷,和有什么缺陷产生相应的信息,上位机11对扫描图像的机器进行结果的备注。
    40.当机器人上传完所有的任务工作点的图像之后,会向上位机11发送一个回到电桩
    充电的指令,上位机可以通过查询所有的充电桩,发送让机器人回到某个具体的充电桩的指令。
    41.当机器人回到充电桩后进入待启动状态,同时所有控制全部关闭,等待下一次上位机启动机器人。
    42.对所公开的实施例的上述说明,使本领域专业技术人员能够实现或使用本实用新型。对这些实施例的多种修改对本领域的专业技术人员来说将是显而易见的,本文中所定义的一般原理可以在不脱离本实用新型的精神或范围的情况下,在其它实施例中实现;因此,本实用新型将不会被限制于本文所示的这些实施例,而是要符合与本文所公开的原理和新颖特点相一致的最宽的范围。
    43.尽管本文较多地使用了图中附图标记:控制机构1,机器人本体2,上位机11,单片机12,集成插接件13,定位结构21,脚轮22,图像采集结构23,伸缩结构24,充电结构25,安装底座211,旋转支撑柱212,圆柱活塞213,lds激光距离传感器214,支撑块231,纵向圆柱活塞232,承载柱233,竖向圆柱活塞234,支撑柱235,激光三维扫描仪236等术语,但并不排除使用其它术语的可能性;使用这些术语仅仅是为了更方便地描述和解释本实用新型的本质;把它们解释成任何一种附加的限制都是与本实用新型精神相违背的。

    技术特征:
    1.一种智能检测焊缝缺陷的机器人,其特征在于:包括控制机构(1)和机器人本体(2),所述机器人本体(2)的顶部布设有定位结构(21),底部布设有脚轮(22),侧面布设有图像采集结构(23),中部布设伸缩结构(24),所述控制机构(1)和机器人本体(2)之间电路连接。2.根据权利要求1所述的一种智能检测焊缝缺陷的机器人,其特征在于:所述定位结构(21)包括安装底座(211)、旋转支撑柱(212)、圆柱活塞(213)和lds激光距离传感器(214),旋转支撑柱(212)的一端转动连接在安装底座(211)上,旋转支撑柱(212)的另一端安装圆柱活塞(213),圆柱活塞(213)上安装有lds激光距离传感器(214)。3.根据权利要求1所述的一种智能检测焊缝缺陷的机器人,其特征在于:所述图像采集结构(23)包括支撑块(231),支撑块(231)通过纵向圆柱活塞(232)连接承载柱(233)的一端,承载柱(233)的另一端通过竖向圆柱活塞(234)连接支撑柱(235),支撑柱(235)的端部布设有激光三维扫描仪(236)。4.根据权利要求3所述的一种智能检测焊缝缺陷的机器人,其特征在于:所述支撑块(231)和承载柱(233)活动连接,承载柱(233)和支撑柱(235)活动连接。5.根据权利要求4所述的一种智能检测焊缝缺陷的机器人,其特征在于:所述承载柱(233)、支撑柱(235)转动时互不干涉。6.根据权利要求1所述的一种智能检测焊缝缺陷的机器人,其特征在于:所述脚轮(22)左右对称布设在机器人本体(2)底部。7.根据权利要求1所述的一种智能检测焊缝缺陷的机器人,其特征在于:所述机器人本体(2)的另一侧面布设有充电结构(25),所述充电结构(25)靠近机器人本体(2)底部布设。8.根据权利要求1所述的一种智能检测焊缝缺陷的机器人,其特征在于:所述伸缩结构(24)连接着机器人本体(2)的上下两部部分。9.根据权利要求1所述的一种智能检测焊缝缺陷的机器人,其特征在于:所述控制机构(1)包括上位机(11)、单片机(12),上位机(11)和单片机(12)之间电路连接。10.根据权利要求9所述的一种智能检测焊缝缺陷的机器人,其特征在于:所述控制机构(1)还包括集成插接件(13),集成插接件(13)的一端与上位机(11)、单片机(12)电路连接,集成插接件(13)的另一端与机器人本体(2)电路连接。

    技术总结
    一种智能检测焊缝缺陷的机器人,包括控制机构和机器人本体,所述机器人本体的顶部布设有定位结构,底部布设有脚轮,侧面布设有图像采集结构,中部布设伸缩结构,所述控制机构和机器人本体之间电路连接,本实用新型即能通过定位结构实现机器人的实时定位,绕过障碍物,回到充电桩充电以及任务点定点;也能通过图像采集结构对原图像的焊缝进行缺陷识别,标注焊缝缺陷识别结果;底部设置的滚轮方便机器人稳定地在车间移动,伸缩结构能帮助机器人检测不同高度的焊缝缺陷。同高度的焊缝缺陷。同高度的焊缝缺陷。


    技术研发人员:朱光熠 马英鹤 杨建国 李华鑫 欧阳俊鑫 闾川阳 吴鹏 梅锦辉
    受保护的技术使用者:浙江工业大学
    技术研发日:2021.11.18
    技术公布日:2022/5/25
    转载请注明原文地址:https://tc.8miu.com/read-14128.html

    最新回复(0)