1.本发明涉及锂电池包装技术领域,更具体地涉及一种钢塑复合膜及其制备方法。
背景技术:
2.锂离子电池广泛应用于数码、交通工具、军事以及储能方面的新能源系统,目前锂电池主要应用的是铝塑复合膜,由耐热性树脂、胶层、铝箔以及热塑性树脂组成。由于铝箔本身强度不足,以及锂离子电池要求的能量密度越来越高的要求,而钢塑复合膜在具备铝塑复合膜性能的基础上,可以改善强度和刚性不足的问题。钢塑复合膜的结构与铝塑复合膜类似,包括耐热性树脂、胶层、钢箔以及热塑性树脂组成。但钢箔表面粗糙度不足,且导热系数比铝箔要差,复合后的钢箔与热塑性树脂不断被电解液中的溶剂、氢氟酸渗透,故而需要加强耐电解液性
技术实现要素:
3.为了克服现有技术的缺陷,本发明的目的是提供一种钢塑复合膜的制备方法,通过该方法制备的钢塑复合膜,能改善钢箔与热塑性树脂之间的结合力,且提高钢箔与热塑性树脂层之间的耐电解液性能。
4.为了实现上述目的,本发明公开了一种钢塑复合膜的制备方法,包括步骤:
5.(1)提供钢箔,所述钢箔具有哑面和亮面,对所述钢箔的两面依次进行除油处理、无铬钝化处理;
6.(2)对所述钢箔的亮面进行硅烷化处理;
7.(3)然后将耐热性树脂与钢箔的哑面进行复合;
8.(4)再将热塑性树脂与钢箔的亮面进行复合。
9.与现有技术相比,本技术的钢塑复合膜的制备方法,依次钢箔的两面依次进行除油处理和无铬钝化处理,钢箔的亮面通过无铬钝化处理后配合硅烷化处理,能提高钢箔与热塑性树脂之间的结合力及致密性,缓解电解液对钢箔与热塑性树脂之间侵蚀,提高钢箔与热塑性树脂层之间的耐电解液性能。
10.较佳地,所述无铬钝化处理采用无铬钝化液进行,所述无铬钝化液包含锆化合物。
11.较佳地,所述硅烷化处理采用乙烯基硅烷偶联剂、氨基硅烷偶联剂、甲基丙烯酰氧基硅烷偶联剂一种或者多种。
12.较佳地,所述耐热性树脂选自聚对苯二甲酸乙二醇酯(以下简称pet膜)、尼龙膜或聚对苯二甲酸乙二醇酯和尼龙的共挤膜。
13.较佳地,所述热塑性树脂选自酸改性聚丙烯树脂。
14.较佳地,采用双组份聚氨酯胶水将耐热性树脂与钢箔的哑面进行干法复合。
15.较佳地,所述无铬钝化液还包含氟化合物或有机羧酸中的至少一种。
16.较佳地,所述无铬钝化液包含氟锆酸、氟锆酸铵。
17.较佳地,采用氢氧化钠、葡萄糖酸钠、五水偏硅酸钠与水按照质量比1:2:1:96配制
成的碱性水溶液对所述钢箔的两面进行除油处理。
18.相应地,本发明还提供一种钢塑复合膜,采用上述制备方法制得。
附图说明
19.图1展示本发明钢塑复合膜的结构示意图。
具体实施方式
20.为详细说明本发明的技术内容、构造特征、所实现目的及效果,以下结合实施方式并配合附图详予说明。
21.请参考图1,本发明的钢塑复合膜包括钢箔30,钢箔具有哑面和亮面,钢箔的哑面叠设耐热性树脂层10,钢箔30的亮面叠设有热塑性树脂层50。优选地,耐热性树脂层10与钢箔30之间设有粘结层20。
22.本发明提供一种制备上述钢塑复合膜的制备方法,包括步骤:
23.(1)提供钢箔,所述钢箔具有哑面和亮面,对所述钢箔的两面依次进行除油处理、无铬钝化处理;
24.(2)对所述钢箔的亮面进行硅烷化处理;
25.(3)然后将耐热性树脂与钢箔的哑面进行复合;
26.(4)再将热塑性树脂与钢箔的亮面进行复合。
27.在本发明的技术方案中,依次钢箔的两面依次进行除油处理、无铬钝化处理,钢箔的亮面通过无铬钝化处理后配合硅烷化处理,能提高钢箔与热塑性树脂之间的结合力及致密性,缓解电解液对钢箔与热塑性树脂之间侵蚀,提高钢箔与热塑性树脂层之间的耐电解液性能。
28.可以理解的是,钢箔厚度为25-90μm,比如钢箔的厚度可为但不限于25μm、35μm、40μm、45μm、55μm、65μm、75μm、85μm、90μm。对钢箔采用除油剂进行除油处理,优选采用碱性溶液,在一个优选的实施例中,除油剂采用氢氧化钠、葡萄糖酸钠、五水偏硅酸钠与水按照质量比1:2:1:96配制成的碱性水溶液,对钢箔的除油效果比较好。除油处理结束后,可采用去离子水清洗干净,以得到更佳的效果。
29.可以理解的是,所述无铬钝化处理采用无铬钝化液进行,所述无铬钝化液包含锆化合物。采用锆化合物能在钢箔表面形成一种化学性质稳定的无定型氧化物zro2,从而获得性能良好的保护膜。进一步,所述无铬钝化液还包含氟化合物或有机羧酸中的至少一种,与锆元素配合,进一步提高保护膜的致密性。在一个优选的实施例中,无铬钝化液包含氟锆酸、氟锆酸铵,对钢箔进行处理后,能大幅提高钢箔与热塑性树脂之间的结合力及致密性。当然,无铬钝化液中还可以包含ph调节剂,其中ph调节剂可为硝酸、盐酸以及他们的混合物,通过ph调节剂控制ph为2-3,以达到最优效果。在无铬钝化处理后,可采用120℃以上高温进行烘干,有利于进行硅烷化处理。
30.可以理解的是,对无铬钝化处理后的钢箔再进行硅烷化处理,能有效增强钢箔与热塑性树脂之间的结合力。优选地,所述硅烷化处理采用乙烯基硅烷偶联剂、氨基硅烷偶联剂、甲基丙烯酰氧基硅烷偶联剂一种或者多种。更为优选地,采用氨基硅烷偶联剂,发明人发现采用氨基硅烷偶联剂进行硅烷化处理后,钢箔与热塑性树脂之间的结合力明显提升。
31.可以理解的是,耐热性树脂层是耐热性树脂材料制得,其中,所述耐热性树脂选自聚对苯二甲酸乙二醇酯(以下简称pet膜)、尼龙膜或聚对苯二甲酸乙二醇酯和尼龙的共挤膜。也就是说,耐热性树脂层单独采用尼龙膜或采用pet膜,也可以采用尼龙膜和pet膜形成的共挤膜。值得一提的是,可以是将尼龙膜和pet膜的制备原料混合,然后注塑或挤出得到复合膜,抗压能力得到提高。进一步,耐热性树脂层是耐热性树脂材料双向拉伸制得或吹塑制得,其中,耐热性树脂层为15-30μm,比如耐热性树脂层的厚度可为但不限于15μm、17μm、19μm、21μm、23μm、25μm、27μm、30μm。更进一步,耐热性树脂层与钢箔的哑面进行干法复合,优选地,采用双组份聚氨酯胶水将耐热性树脂层与钢箔的哑面进行干法复合。
32.可以理解的是,热塑性树脂层是热塑性树脂材料制得,热塑性树脂选自酸改性聚丙烯树脂(cpp),包括热封层、基材层和复合层共三层,可以是三层共挤流延聚丙烯膜,也可以是热封层和基材层流延成两层流延膜,复合层用于流延复合钢箔与上述两层流延膜。优选地,热塑性树脂层的厚度为20-80μm,比如热塑性树脂层的厚度可为但不限于20μm、30μm、40μm、50μm、60μm、70μm、80μm。优选的实施例中,复合层的厚度为热塑性树脂层的10%-35%。
33.下面通过几个具体的优选实施例来进一步阐述本发明的钢塑复合膜的制备方法,但并不因此而限定本发明的保护范围。
34.实施例1
35.一种钢塑复合膜的制备方法,包括步骤:
36.(1)将氢氧化钠、葡萄糖酸钠、五水偏硅酸钠与水按照质量比1:2:1:96配制成碱性水溶液,将40μm的钢箔双面放入该碱性水溶液中进行除油处理,钢箔经碱洗后,去离子水清洗干净;
37.(2)将氟锆酸、氟锆酸铵与水按照质量比1:2:97制成水溶液,再加入硝酸调节ph至2-3,采用该水溶液对除油后的钢箔进行无铬钝化处理,然后采用120℃烘干;
38.(3)将氨基硅烷偶联剂sca-1113与乙醇、水按照5:20:75质量比稀释后加入氨水调节ph到8.0,静置水解24h后,采用其对无铬钝化处理的钢箔亮面进行硅烷化处理,采用120℃烘干;
39.(4)将耐热性树脂与处理后的钢箔的哑面进行复合,耐热性树脂选用25μm双向拉伸尼龙膜(pa),采用双组份聚氨酯胶水复合,上胶量4-5g/m2,在50-80℃条件固化2-3天。
40.(5)再将热塑性树脂与处理后的钢箔的亮面进行复合,热塑性树脂选用80μm的三层流延酸改性聚丙烯膜(cpp)复合,采用160℃温度复合,得到钢塑复合膜。
41.实施例2
42.该实施例与实施例1基本相同,不同在于:该实施例2采用甲基丙烯酰氧基硅烷偶联剂kbm-503进行硅烷化处理,而实施例1采用氨基硅烷偶联剂sca-1113进行硅烷化处理。
43.实施例3
44.该实施例与实施例1基本相同,不同在于:该实施例3采用乙烯基硅烷偶联剂a172进行硅烷化处理,而实施例1采用氨基硅烷偶联剂sca-1113进行硅烷化处理。
45.对比例1
46.一种钢塑复合膜的制备方法,包括步骤:
47.(1)将氢氧化钠、葡萄糖酸钠、五水偏硅酸钠与水按照质量比1:2:1:96配制成碱性
水溶液,将40μm的钢箔双面放入该碱性水溶液中进行除油处理,钢箔经碱洗后,去离子水清洗干净;
48.(2)将氟锆酸、氟锆酸铵与水按照质量比1:2:97制成水溶液,再加入硝酸调节ph至2-3,采用该水溶液对除油后的钢箔进行无铬钝化处理,然后采用120℃烘干;
49.(3)将耐热性树脂与无铬钝化处理后的钢箔的哑面进行复合,耐热性树脂选用25μm双向拉伸尼龙膜,采用双组份聚氨酯胶水复合,上胶量4-5g/m2,在50-80℃条件固化2-3天。
50.(4)再将热塑性树脂与处理后的钢箔的亮面进行复合,热塑性树脂选用80μm的三层流延酸改性聚丙烯膜(cpp)复合,采用160℃温度复合,得到钢塑复合膜。
51.对比例2
52.一种钢塑复合膜的制备方法,包括步骤:
53.(1)将氢氧化钠、葡萄糖酸钠、五水偏硅酸钠与水按照质量比1:2:1:96配制成碱性水溶液,将40μm的钢箔双面放入该碱性水溶液中进行除油处理,钢箔经碱洗后,去离子水清洗干净;
54.(2)将氨基硅烷偶联剂sca-1113与乙醇、水按照5:20:75质量比稀释后加入氨水调节ph到8.0,静置水解24h后,采用其对除油后的钢箔亮面进行硅烷化处理,再采用120℃烘干;
55.(3)将耐热性树脂与处理后的钢箔的哑面进行复合,耐热性树脂选用25μm双向拉伸尼龙膜,采用双组份聚氨酯胶水复合,上胶量4-5g/m2,在50-80℃条件固化2-3天。
56.(4)再将热塑性树脂与处理后的钢箔的亮面进行复合,热塑性树脂选用80μm的三层流延酸改性聚丙烯膜(cpp)复合,采用160℃温度复合,得到钢塑复合膜。
57.将实施例1-3及对比例1-2的钢塑复合膜进行剥离力测试和耐电解液性能测试,测试结果如表1所示。
58.剥离力测试方法:将复合得到的钢塑复合膜,裁切为15mm*150mm的样条,把cpp与钢箔撕开,按照gb/t 8808-1988的规定进行,试样速度50mm/min。
59.耐电解液性能测试方法:将钢塑复合膜裁切为15mm*150mm的样条,浸入碳酸乙烯酯、碳酸二乙酯、碳酸二甲酯配制的1:1:1混合溶剂及含有1mol/l的六氟磷酸锂配制成的电解液中,且电解液游离酸不超过50ppm。在85
±
2℃烘箱中烘烤24h,取出自然冷却至常温擦拭干净,按照剥离力测试方法测试。
60.表1试验数据
[0061][0062]
由表1的数据可知,实施例1-3中不同基团的烷偶联剂对于促进钢箔与cpp膜的复合效果差异很大,cpp/钢箔剥离力差异很大,同时由于初始剥离力的差异造成耐电解液性能也有差异,优选采用氨基硅烷偶联剂进行硅烷化处理,可能是氨基结构的缘故。实施例1与对比例1相比,说明硅烷化处理明显提升了cpp/钢箔的剥离力,实施例1与对比例2相比,说明只进行硅烷化处理,不具备耐电解液性能,硅烷化处理与无铬钝化液相结合处理明显提高cpp/钢箔的剥离力。
[0063]
以上所揭露的仅为本发明的优选实施例而已,当然不能以此来限定本发明之权利范围,因此依本发明申请专利范围所作的等同变化,仍属本发明所涵盖的范围。
技术特征:
1.一种钢塑复合膜的制备方法,其特征在于,包括步骤:(1)提供钢箔,所述钢箔具有哑面和亮面,对所述钢箔的两面依次进行除油处理、无铬钝化处理;(2)对所述钢箔的亮面进行硅烷化处理;(3)然后将耐热性树脂与所述钢箔的哑面进行复合;(4)再将热塑性树脂与所述钢箔的亮面进行复合。2.如权利要求1所述的钢塑复合膜的制备方法,其特征在于,所述无铬钝化处理采用无铬钝化液进行,所述无铬钝化液包含锆化合物。3.如权利要求1所述的钢塑复合膜的制备方法,其特征在于,所述硅烷化处理采用乙烯基硅烷偶联剂、氨基硅烷偶联剂、甲基丙烯酰氧基硅烷偶联剂一种或者多种。4.如权利要求1所述的钢塑复合膜的制备方法,其特征在于,所述耐热性树脂选自聚对苯二甲酸乙二醇酯、尼龙膜或聚对苯二甲酸乙二醇酯和尼龙的共挤膜。5.如权利要求1所述的钢塑复合膜的制备方法,其特征在于,所述热塑性树脂选自酸改性聚丙烯树脂。6.如权利要求1所述的钢塑复合膜的制备方法,其特征在于,采用双组份聚氨酯胶水将耐热性树脂与钢箔的哑面进行干法复合。7.如权利要求2所述的钢塑复合膜的制备方法,其特征在于,所述无铬钝化液还包含氟化合物或有机羧酸中的至少一种。8.如权利要求7所述的钢塑复合膜的制备方法,其特征在于,所述无铬钝化液包含氟锆酸和氟锆酸铵。9.如权利要求1所述的钢塑复合膜的制备方法,其特征在于,采用氢氧化钠、葡萄糖酸钠、五水偏硅酸钠与水按照质量比1:2:1:96配制成的碱性水溶液对所述钢箔的两面进行除油处理。10.一种钢塑复合膜,其特征在于,采用如权利要求1-9任一项所述的制备方法制得。
技术总结
本发明公开了一种钢塑复合膜及其制备方法,该制备方法包括步骤:(1)提供钢箔,所述钢箔具有哑面和亮面,对所述钢箔的两面依次进行除油处理、无铬钝化处理和硅烷化处理;(2)然后将耐热性树脂与钢箔的哑面进行复合;(3)再将热塑性树脂与钢箔的亮面进行复合。通过无铬钝化处理后配合硅烷化处理,能提高钢箔与热塑性树脂之间的结合力及致密性,缓解电解液对钢箔与热塑性树脂之间侵蚀,提高钢箔与热塑性树脂层之间的耐电解液性能。层之间的耐电解液性能。层之间的耐电解液性能。
技术研发人员:杨慧慧 戴平翔 戴晓兵 井光辉
受保护的技术使用者:江西省盛纬材料有限公司
技术研发日:2022.03.17
技术公布日:2022/5/25
转载请注明原文地址:https://tc.8miu.com/read-14543.html