一种基于残差修正时间序列的用电预测方法与流程

    专利查询2023-02-12  90



    1.本发明公开一种方法,涉及数据预测技术领域,具体地说是一种基于残差修正时间序列的用电预测方法。


    背景技术:

    2.对社会生产各行业和人民生活各方面需对用电量进行预测。目前对于季节性的趋势预测通常有两种做法,一种是通过历史数据进行建模预测新数据,另一种是通过历史的特征和特征对应的数据进行建模并使用新特征预测新数据。然而当遇到既有历史特征又有历史数据的场景,例如场景与天气数据有强相关性,同时具备强周期性时,单纯通过上述任一方法都无法完整的利用数据取得可靠的预测结果。而将两种方法并行使用时,由于无法对两种模型的可靠性进行评价,也难以确定结论不一致时的权值分配及预测结果。


    技术实现要素:

    3.本发明针对现有技术的问题,提供一种基于残差修正时间序列的用电预测方法,改善了以往模型单独依靠历史特征进行预测或者历史结果进行预测的数据利用不充分和预测偏差较大的问题。
    4.本发明提出的具体方案是:
    5.一种基于残差修正时间序列的用电预测方法,利用时间序列预测模型根据历史用电量数据预测获得新用电量预测数据,
    6.以历史天气数据为特征,以所述历史用电量数据与所述新用电量预测数据的差值为标签,构建残差回归模型,
    7.利用残差回归模型根据新天气数据特征预测残差,与所述新用电量预测数据结合产生用电量预测结果。
    8.进一步,所述的一种基于残差修正时间序列的用电预测方法中所述利用时间序列预测模型根据历史用电量数据预测获得新用电量预测数据,包括:
    9.通过利用时间序列预测模型分解历史用电量数据,获得趋势数据分量,周期性数据分量和随机波动数据分量,根据所述趋势数据分量使用多项式函数拟合获得趋势预测数据,所述趋势预测数据结合周期性数据分量和随机波动数据分量获得新用电量预测数据。
    10.进一步,所述的一种基于残差修正时间序列的用电预测方法中所述使用多项式函数拟合获得趋势预测数据,包括:
    11.利用最小二乘法或随机梯度下降法拟合获得趋势预测数据。
    12.进一步,所述的一种基于残差修正时间序列的用电预测方法中所述构建残差回归模型,包括:
    13.构建线性回归的残差回归模型或者决策树残差回归模型。
    14.本发明还提供一种基于残差修正时间序列的用电预测装置,包括预测模块和构建模块,
    15.所述构建模块利用时间序列预测模型根据历史用电量数据预测获得新用电量预测数据,
    16.以历史天气数据为特征,以所述历史用电量数据与所述新用电量预测数据的差值为标签,构建残差回归模型,
    17.所述预测模块利用残差回归模型根据新天气数据特征预测残差,与所述新用电量预测数据结合产生用电量预测结果。
    18.进一步,所述的一种基于残差修正时间序列的用电预测装置中所述构建模块利用时间序列预测模型根据历史用电量数据预测获得新用电量预测数据,包括:
    19.通过利用时间序列预测模型分解历史用电量数据,获得趋势数据分量,周期性数据分量和随机波动数据分量,根据所述趋势数据分量使用多项式函数拟合获得趋势预测数据,所述趋势预测数据结合周期性数据分量和随机波动数据分量获得新用电量预测数据。
    20.进一步,所述的一种基于残差修正时间序列的用电预测装置中所述构建模块使用多项式函数拟合获得趋势预测数据,包括:
    21.利用最小二乘法或随机梯度下降法拟合获得趋势预测数据。
    22.进一步,所述的一种基于残差修正时间序列的用电预测装置中所述构建模块构建残差回归模型,包括:
    23.构建线性回归的残差回归模型或者决策树残差回归模型。
    24.本发明的有益之处是:
    25.本发明提供一种基于残差修正时间序列的用电预测方法,通过时间序列预测模型先对历史用电量数据进行分解和预测,产生新用电量预测,再利用残差回归模型学习历史天气数据与用电量预测残差的关系,使用新天气数据特征预测残差,与新用电量预测结合产生最终预测结果,本发明方法充分利用了历史的特征和结果,融合两个模型进行预测,改善了以往模型单独依靠历史特征进行预测或者历史结果进行预测的数据利用不充分和预测偏差较大的问题。
    附图说明
    26.为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
    27.图1是本发明方法流程示意图。
    具体实施方式
    28.下面结合附图和具体实施例对本发明作进一步说明,以使本领域的技术人员可以更好地理解本发明并能予以实施,但所举实施例不作为对本发明的限定。
    29.本发明提供一种基于残差修正时间序列的用电预测方法,利用时间序列预测模型根据历史用电量数据预测获得新用电量预测数据,
    30.以历史天气数据为特征,以所述历史用电量数据与所述新用电量预测数据的差值为标签,构建残差回归模型,
    31.利用残差回归模型根据新天气数据特征预测残差,与所述新用电量预测数据结合产生用电量预测结果。
    32.本发明对历史用电量数据进行时间序列分解,对分解出的趋势分量进行多项式函数拟合,预测新的用电量数据,减去真实值作为残差,使用历史天气数据对残差进行回归建模,预测新残差,与时间序列分解预测的值相加得到最终预测值。
    33.具体应用中,在本发明方法的一些实施例中,基于残差修正时间序列进行用电预测时,利用时间序列预测模型根据历史用电量数据预测获得新用电量预测数据,
    34.其中可收集历史用电量数据和历史天气数据,并划分数据集,划分时间周期可以为四周或者一个月,利用时间序列预测模型对历史用电量数据进行分解和预测,分解为三个分量,分别为趋势数据分量,周期性数据分量和随机波动数据分量,对趋势数据分量使用多项式函数拟合获得新用电量预测数据,即将需要预测的日期代入多项式函数,加上对应日期的周期性数据分量值以及随机波动数据分量的均值获得新用电量预测数据,例如多项式函数方法包括最小二乘法、随机梯度下降法等方法,
    35.以历史天气数据为特征,以所述历史用电量数据与所述新用电量预测数据的差值为标签,构建残差回归模型,其中历史天气数据例如温湿度是数值,类别信息如风向、云量等可以用数字编码、onehot编码或者dummy编码表示,
    36.残差回归模型可以为线性回归或决策树回归等模型,将残差回归模型得到的新残差与时间序列模型分解得到的新用电量预测数据相加,得到最终的用电量预测值。本发明方法通过残差回归模型将仅依靠历史结果进行预测的时间序列模型进行一步修正,修正的依据是天气数据,又能避免单独依靠天气数据进行回归忽略时间上的先后联系的问题,达到同时利用两种数据的特点进行互补和修正的目的。
    37.上述方法简单的计算过程,例如历史用电量y及其对应的历史天气数据x,分别平均分为n份,对于y_n进行时间序列分解,拟合y_n的趋势,获得y_n的用电量预测数据,y_n的用电量预测数据减去y_n的真实值,得到残差r_n,使用x_n的历史天气数据当做训练数据,r_n当做训练标签训练一个残差回归模型。当进行第n+1次的预测时,先使用时间序列模型进行预测,得到y_(n+1)的新用电量预测数据,使用天气数据x_(n+1),利用残差回归模型得到残差r_(n+1),使用y_(n+1)的新用电量预测数据+r_(n+1)残差作为最终预测结果。
    38.本发明还提供一种基于残差修正时间序列的用电预测装置,包括预测模块和构建模块,
    39.所述构建模块利用时间序列预测模型根据历史用电量数据预测获得新用电量预测数据,
    40.以历史天气数据为特征,以所述历史用电量数据与所述新用电量预测数据的差值为标签,构建残差回归模型,
    41.所述预测模块利用残差回归模型根据新天气数据特征预测残差,与所述新用电量预测数据结合产生用电量预测结果。
    42.上述装置内的各模块之间的信息交互、执行过程等内容,由于与本发明方法实施例基于同一构思,具体内容可参见本发明方法实施例中的叙述,此处不再赘述。
    43.同样地,本发明装置通过时间序列预测模型先对历史用电量数据进行分解和预测,产生新用电量预测,再利用残差回归模型学习历史天气数据与用电量预测残差的关系,
    使用新天气数据特征预测残差,与新用电量预测结合产生最终预测结果,本发明装置充分利用了历史的特征和结果,融合两个模型进行预测,改善了以往模型单独依靠历史特征进行预测或者历史结果进行预测的数据利用不充分和预测偏差较大的问题。
    44.需要说明的是,上述各流程和各装置结构中不是所有的步骤和模块都是必须的,可以根据实际的需要忽略某些步骤或模块。各步骤的执行顺序不是固定的,可以根据需要进行调整。上述各实施例中描述的系统结构可以是物理结构,也可以是逻辑结构,即,有些模块可能由同一物理实体实现,或者,有些模块可能分由多个物理实体实现,或者,可以由多个独立设备中的某些部件共同实现。
    45.以上所述实施例仅是为充分说明本发明而所举的较佳的实施例,本发明的保护范围不限于此。本技术领域的技术人员在本发明基础上所作的等同替代或变换,均在本发明的保护范围之内。本发明的保护范围以权利要求书为准。

    技术特征:
    1.一种基于残差修正时间序列的用电预测方法,其特征是利用时间序列预测模型根据历史用电量数据预测获得新用电量预测数据,以历史天气数据为特征,以所述历史用电量数据与所述新用电量预测数据的差值为标签,构建残差回归模型,利用残差回归模型根据新天气数据特征预测残差,与所述新用电量预测数据结合产生用电量预测结果。2.根据权利要求1所述的一种基于残差修正时间序列的用电预测方法,其特征是所述利用时间序列预测模型根据历史用电量数据预测获得新用电量预测数据,包括:通过利用时间序列预测模型分解历史用电量数据,获得趋势数据分量,周期性数据分量和随机波动数据分量,根据所述趋势数据分量使用多项式函数拟合获得趋势预测数据,所述趋势预测数据结合周期性数据分量和随机波动数据分量获得新用电量预测数据。3.根据权利要求1或2所述的一种基于残差修正时间序列的用电预测方法,其特征是所述使用多项式函数拟合获得趋势预测数据,包括:利用最小二乘法或随机梯度下降法拟合获得趋势预测数据。4.根据权利要求1所述的一种基于残差修正时间序列的用电预测方法,其特征是所述构建残差回归模型,包括:构建线性回归的残差回归模型或者决策树残差回归模型。5.一种基于残差修正时间序列的用电预测装置,其特征是包括预测模块和构建模块,所述构建模块利用时间序列预测模型根据历史用电量数据预测获得新用电量预测数据,以历史天气数据为特征,以所述历史用电量数据与所述新用电量预测数据的差值为标签,构建残差回归模型,所述预测模块利用残差回归模型根据新天气数据特征预测残差,与所述新用电量预测数据结合产生用电量预测结果。6.根据权利要求5所述的一种基于残差修正时间序列的用电预测装置,其特征是所述构建模块利用时间序列预测模型根据历史用电量数据预测获得新用电量预测数据,包括:通过利用时间序列预测模型分解历史用电量数据,获得趋势数据分量,周期性数据分量和随机波动数据分量,根据所述趋势数据分量使用多项式函数拟合获得趋势预测数据,所述趋势预测数据结合周期性数据分量和随机波动数据分量获得新用电量预测数据。7.根据权利要求5或6所述的一种基于残差修正时间序列的用电预测装置,其特征是所述构建模块使用多项式函数拟合获得趋势预测数据,包括:利用最小二乘法或随机梯度下降法拟合获得趋势预测数据。8.根据权利要求5所述的一种基于残差修正时间序列的用电预测装置,其特征是所述构建模块构建残差回归模型,包括:构建线性回归的残差回归模型或者决策树残差回归模型。

    技术总结
    本发明公开一种基于残差修正时间序列的用电预测方法,涉及数据预测技术领域;利用时间序列预测模型根据历史用电量数据预测获得新用电量预测数据,以历史天气数据为特征,以所述历史用电量数据与所述新用电量预测数据的差值为标签,构建残差回归模型,利用残差回归模型根据新天气数据特征预测残差,与所述新用电量预测数据结合产生用电量预测结果。用电量预测数据结合产生用电量预测结果。用电量预测数据结合产生用电量预测结果。


    技术研发人员:段强 李锐 张晖
    受保护的技术使用者:山东浪潮科学研究院有限公司
    技术研发日:2022.02.15
    技术公布日:2022/5/25
    转载请注明原文地址:https://tc.8miu.com/read-15180.html

    最新回复(0)