1.本发明涉及光伏发电的支架追日自动跟踪领域,具体为带组件及子串级功率优化器功能的一种智能光伏组件的单轴角度跟踪方法和系统。
背景技术:
2.光伏电站的安装支架结构大致可分为最优倾角固定式、追日跟踪式和固定可调式。太阳光伏阵列自动追日跟踪系统可调节组件的朝向并实时跟踪太阳运动,使太阳光直射光伏阵列,从而增加光伏阵列接收到的太阳辐射量,提高太阳光伏发电系统的总体发电量。追日跟踪式又分为平单轴跟踪式、斜单轴跟踪式和双轴跟踪式。特别地,平单轴跟踪支架系统为沿南北轴在东西方向旋转,在其他方面,斜单轴跟踪支架系统可倾斜于水平安装纬度进一步使组件正对太阳,但斜单轴也会使单位支架的组件数量减少;而双轴跟踪支架系统可经纬调节地跟踪太阳,但安装和维护成本高。因而,单轴跟踪支架系统以其结构简单实用、发电增益明显的特点得到广泛的应用。
3.然而,早晚太阳入射角度较窄,存在相邻支架的光伏组件出现遮挡问题,增加相邻支架的间距可降低遮挡问题,但会增加光伏电站的占地面积。此外,对于双面光伏发电的系统,背面的照度不均匀性受到光伏组件前后排及左右相邻组件的自阴影影响。因而,在设定的间距要求下如何实现组件通过跟踪支架追踪最大辐照成为需要解决的问题。现有技术关于平单轴光伏系统在大型光伏电站中应用很广泛,并且关于平单轴的跟踪方法研究也很多,也有很多文献是关于组件遮挡与平单轴发电量关系的这方面的研究。
4.文献一,题为《基于组件遮挡功率损耗的平单轴轨迹优化方法》,作者为单立、张臻,发表于刊物《电源技术》2016,40(7):1446-1449,其中介绍了小比例遮挡对平单轴跟踪系统功率损失影响,及平单轴发电系统发电量最大时对应的最优阴影遮挡比例。文献一公开了太阳的运动轨迹的计算方法,当太阳高度角较小时,若保持组件与太阳光线垂直会造成电池片被遮挡,系统须调整角度使组件处于最优遮挡状态。文献一中发现,可发现当组件的单块电池片被阴影遮挡0%~10%时,组件的功率损失很小。如被遮挡lo%,组件损失了1.2%的功率,因而可通过计算最优遮挡比例而提高全年发电量。
5.文献二,题为《局部阴影遮挡对大型并网光伏电站影响的研究》,作者为程宇旭、李建泉、吴小云及翟文杰,发表于刊物《大功率变流技术》2014(5):49-53,其中介绍了局部阴影遮挡对光伏电站的影响。文献二中发现,即串联的光伏电池其中一块因遮挡等原因照度下降,会是的整串电池的电流下降,并且使串联的其他光伏电池的工作电压不在最大功率的工作电压下,而被遮挡的将作为负载消耗组串中其他电池片所产生热量,继而产生热斑现象。并且,局部阴影条件电池片串呈现多峰特性,即使利用功率优化器也难以工作在最大功率点,继而造成发电量的损失。
6.综上,现在平单轴系统采用的跟踪方法主要是利用天文算法跟踪视日轨迹的方法,配合倾角传感器跟踪方式。天文算法跟踪视日轨迹的方法有完全跟踪不考虑阴影遮挡和出现阴影回转一定角度的两种跟踪方式,前者可能使组件出现比较大比例的阴影遮挡造
成光伏阵列的功率损失,而后者则会使系统的入射角太大而使光伏阵列不会处于最大发电状态。
技术实现要素:
7.为解决现有技术中存在的上述技术问题,本发明提供了一种智能光伏组件的单轴角度跟踪方法和系统,可自动确定合适的阴影遮挡比例和太阳入射角度,并实现提升平单轴光伏发电系统的发电增益,降低光伏系统的度电成本(lcoe)。
8.在一方面,本发明提供一种智能光伏组件的单轴角度跟踪方法,应用于可角度跟踪的光伏发电系统,所述光伏发电系统包括至少一个单轴跟踪支架,所述单轴跟踪支架在行方向安装有若干光伏组件,所述光伏组件包含由封装于光伏组件内同数量的电池片经串/并联成的在列方向分布的至少两个电池单元,所述电池单元连接有功率优化器,各所述功率优化器串联并作为光伏组件输出端;该角度跟踪方法包括:
9.根据预设天文算法计算得到跟踪角参考值ac;
10.采集单轴跟踪支架上的功率优化器的电参量信息;
11.在当前跟踪角参考值ac基础上,根据所获得的电参量信息以满足发电量最大化地调节优化角度,并控制单轴跟踪支架运行在该最佳跟踪角a;
12.当电参量信息的变化超出预设要求,重新获取当前最佳跟踪角a。
13.优选的,上述智能光伏组件的单轴角度跟踪方法中,由功率优化器的电参量信息的角度跟踪方法包括:
14.采集单轴跟踪支架上功率优化器的功率信息,并获取各功率优化器的总功率;
15.按照跟踪角的初始值ac在预设小角度调节单轴跟踪支架的跟踪角,比较跟踪角调节前后功率优化器总功率差异,判断是否进一步调节跟踪角,直至累积小角度调节使功率优化器的总功率的最大化,控制单轴跟踪支架运行在当前最优跟踪角度a;
16.当所采集功率优化器总功率变化超出预设条件,重新获取当前最佳跟踪角a。
17.优选的,上述智能光伏组件的单轴角度跟踪方法中,应用于所述光伏组件为双面发电组件;由功率优化器的电参量信息的角度跟踪方法包括:
18.采集单轴跟踪支架上功率优化器的功率信息;
19.按照跟踪角的初始值ac在预设小角度调节单轴跟踪支架的跟踪角;
20.比较跟踪角调节前后功率优化器在列方向上功率的差异,判断是否进一步调节跟踪角,直至当前跟踪角度在列方向上功率的差异满足预设要求,使跟踪角度最优化a;
21.当所采集功率优化器列方向上功率的差异超出预设条件,重新获取当前最佳跟踪角a。
22.优选的,上述智能光伏组件的单轴角度跟踪方法中,应用于所述光伏组件为双面发电组件;该角度跟踪方法还包括:
23.采集气象数据信息,并判断出控制所述单轴跟踪支架的运行模式;
24.若天气模式为晴天模式,则判断所处阶段,控制所述单轴跟踪支架运行于经优化角度s调节的天文跟踪角度ac,确定最佳跟踪角度。
25.若为早晚阶段,在天文跟踪角度a上,根据功率优化器的总功率信息变化,确定最佳跟踪角度;
26.若为中午及前后阶段,在天文跟踪角度a上,则根据功率优化器在列方向上功率信息的变化,确定最佳跟踪角度。
27.优选的,上述智能光伏组件的单轴角度跟踪方法中,所述单轴跟踪支架的运行模式还包括:
28.若天气模式为阴/雨天模式,则控制所述单轴跟踪支架在水平及水平附近位置的固定角度固定;
29.若天气模式为多云模式,则控制所述单轴跟踪支架运行于天文跟踪角度ac。
30.在另一方面,本发明提供了一种智能光伏组件的单轴角度跟踪系统,其特征在于,该角度跟踪系统包括:光伏组件、单轴跟踪支架和跟踪控制模块;
31.所述光伏组件由电池片呈矩形阵列排布并封装而成,区域等分的所述的电池片连接构成至少两个电池单元,所述电池单元包括多串由矩形短边方向呈行排布的电池片相互串联而成的电池片串,各所述电池片串矩形长边方向排布并相互串联和/或并联连接构成电池单元的输出端,所述电池单元的输出端连接有功率优化器的输入端,各所述功率优化器的输出端串联并作为光伏组件的输出端;
32.所述单轴跟踪支架在行方向沿矩形长边竖向地安装有若干光伏组件,所述单轴跟踪支架连接并受控于所述跟踪控制模块;
33.所述跟踪控制模块由预设天文算法计算得到跟踪角参考值ac,采集单轴跟踪支架上的功率优化器的电参量信息,根据该电参量信息在参考值ac的调节上控制所述单轴跟踪支架运行在最佳跟踪角度a。
34.优选的,上述智能光伏组件的单轴角度跟踪系统中,所述跟踪控制模块包括:天文处理单元、优化器采集单元、优化控制单元和跟踪判断单元;
35.所述天文处理单元,根据预设天文算法计算得到跟踪角的初始值ac;
36.所述优化器采集单元,采集单轴跟踪支架上功率优化器的功率信息,并获取各功率优化器的总功率;
37.所述优化控制单元,按照跟踪角的初始值ac在预设小角度调节单轴跟踪支架的跟踪角,比较跟踪角调节前后功率优化器总功率差异,判断是否进一步调节跟踪角,直至累积小角度调节使功率优化器的总功率的最大化,控制单轴跟踪支架运行在当前最优跟踪角度a;
38.所述跟踪判断单元,判断功率优化器总功率变化是否超出预设条件,以维持单轴跟踪支架运行于最佳跟踪角a。
39.优选的,上述智能光伏组件的单轴角度跟踪系统中,所述跟踪控制模块包括:天文处理单元、优化器采集单元、优化控制单元和跟踪判断单元;
40.所述天文处理单元,根据预设天文算法计算得到跟踪角的初始值ac;
41.所述优化器采集单元,采集单轴跟踪支架上功率优化器的功率信息,并获得功率优化器在列方向上功率的差异;
42.所述优化控制单元,按照跟踪角的初始值ac在预设小角度调节单轴跟踪支架的跟踪角,比较跟踪角调节前后功率优化器在列方向上功率的差异,判断是否进一步调节跟踪角,直至当前跟踪角度在列方向上功率的差异满足预设要求,使跟踪角度最优化a。
43.所述跟踪判断单元,比较判断调节前后的在列方向上各功率优化器的功率信息的
差异变化是否超出预设要求,以维持单轴跟踪支架运行于最佳跟踪角a。
44.优选的,上述智能光伏组件的单轴角度跟踪系统中,所述跟踪控制模块还包括:模式判断单元和气象获取单元;
45.所述气象获取单元,获取气象数据信息;
46.所述模式判断单元,根据气象数据信息运行于对应天气模式;
47.若天气模式为阴雨天模式,则控制所述单轴跟踪支架在零度或接近零点的固定角度固定;
48.若天气模式为多云模式,则控制所述单轴跟踪支架运行于天文跟踪角度ac;
49.若天气模式为晴天模式,则判断所述单轴跟踪支架运行阶段,若为早晚阶段,则根据功率优化器的总功率信息,以及天文跟踪角度ac,确定最佳跟踪角度;若为中午及前后阶段,则根据功率优化器在列方向的功率信息差异,以及天文跟踪角度ac,确定最佳跟踪角度。
50.优选的,上述智能光伏组件的单轴角度跟踪系统中,所述电池单元中有,部分的所述电池片串同一极性朝向地相互并联构成第一串组,相同数量的另一部分的所述电池片串相反极性朝向地相互并联构成第二串组,所述第一串组和第二串组相互串联,并且串联的两端连接于功率优化器;极性朝向相同的各所述电池片串相邻地排列,或者,极性朝向相反的各所述电池片串相邻地排列;所述单轴跟踪支架安装有至少两排的光伏组件;所述功率优化器为光伏最大功率跟踪的dc/dc转换模块。
51.本发明的工作原理在于:在一方面地,本发明将光伏组件内设置有至少两个电池单元,各电池单元经由独立的功率优化器,在跟踪光伏最大功率点地输出电力,并且各电池单元在列方向分布,相邻排的支架产生的遮挡阴影,仅将遮挡其中一电池单元,在列方向的其他电池单元将不发生遮挡,且遮挡阴影的程度关联于支架角度的调节;双面光伏组件的背面辐照不均匀,也将较为平衡地分布在不同电池单元,且背部辐照的均衡程度关联于支架角度的调节;在另一方面地,本发明对单轴跟踪支架的运行进行控制,在可使支架角度随太阳高度角变化的天文算法角度基础上,采集支架上各光伏组件的功率优化器电参量信息,根据参量判断是否出现支架排间的阴影遮挡,以及平衡双面光伏组件的功率均衡性,并经过判断出合适的天气环境,在相应的模式下控制支架运行。
52.相对于现有技术,本发明的有益效果主要体现在以下几个方面:
53.(1)本发明将至少两个电池单元的光伏组件安装于单轴跟踪支架,电池单元矩形阵列长边方向区域等分电池片排布构成,每个电池单元均由矩形短边方向的横向串联成电池片串,并且每个电池单元可跟踪最大功率点地受控于功率优化器输出,使发生于各电池单元内背面阴影遮挡使一致的,而前后排遮挡仅发生其中一电池单元内,使各电池单元在功率优化器下以最优的功率和稳定的输出电压运行,跟踪控制模块根据功率优化器的运行状态控制单轴跟踪支架的跟踪角度,在天文算法的基础上,综单轴跟踪支架最优跟踪角度,能降低阴影遮挡对功率影响同时,使阳光入射角度可获取最优辐照量,进而获取最优的光伏发电功率,使大型光伏电站中可实效性地配备单轴跟踪系统,达到能在大幅降低平准化度成本的目的。
54.(2)本发明的光伏组件采用多电池单元的结构,进一步使光伏组件可组件长边纵向的竖装方式,可减少支架上檩条的使用数量,也减少安装孔位的数量,极大降低安装的成
本;本发明的光伏组件还采用短边排布电池片串联的结构,除了可有效挽回前后排遮挡的功率损失问题,还能有效挽回局部电池片遮挡、背面不均匀照度,横梁遮挡等问题造成的失配损失;本发明的光伏组件还采用双面电池片,使跟踪控制模块对支架的角度控制不仅考虑前后排遮挡,还考虑到背面辐照不均匀,可使光伏组件的背面可获取更多的反射的太阳光线能量。本发明的安装于单轴跟踪支架的各光伏组件采用c型的串联方式,使相邻的光伏组件可直接串联,并减少输出电线长度,且串联的组件在优化器作用下不会失配而损失发电量。
55.(3)本发明综合地使单轴跟踪支架的光伏组件总辐照量大幅增加,并能够通过新的天文跟踪算法,计算理论跟踪最优角度,确定前后排阴影遮挡与光伏发电模块辐照获得量的平衡,提升平单轴跟踪系统的光伏发电模块的发电量。可进一步解决复杂不平坦地形的前后排遮挡不均匀及双面光伏组件背面发电获得的散射辐照及地表反射辐照不均匀问题,通过大数据分析与智能算法,在以上天文算法的基础上,调整控制平单轴支架的转动角度,计算理论单独每排跟踪支架的最优跟踪角度。本发明进一步通过获取气象数据信息,判断是否为晴天模块,并在晴天模式下解决复杂不平单地形的前后排遮挡不均匀及双面光伏组件背面发电获得的散射辐照及地表反射辐照不均匀问题。
56.下面结合附图对本发明作进一步的说明。
附图说明
57.图1为本发明的单轴角度跟踪方法流程示意图;
58.图2为本发明的单轴角度跟踪系统结构示意图;
59.图3为本发明的单轴角度跟踪系统光伏组件电路结构示意图;
60.图4为本发明的单轴角度跟踪系统光伏组件外部结构示意图;
61.图5为本发明的单轴角度跟踪系统光伏组件正背面阴影效果展示图;
62.图6为本发明的单轴角度跟踪系统功率优化器电路结构示意图;
63.图7为本发明的单轴角度跟踪系统光伏组件安装结构示意图;
64.图8为本发明的单轴角度跟踪系统跟踪控制模块结构示意图。
65.附图标记:10、光伏组件;11、电池单元;20、光伏电池片;21、电池片串;221、第一串组;222、第二串组;30、功率优化器;31、dc/dc转换模块;32、最大功率跟踪单元;33、脉冲宽度调制单元;34、接线盒;40、光伏组串;50、单轴跟踪支架;60、跟踪控制模块;61、气象采集单元;62、优化器采集单元;63、气象获取单元;64、模式判断单元;65、跟踪判断单元;66、优化控制单元;70、气象站。
具体实施方式
66.为更好的说明本发明的目的、技术方案和优点,下面结合附图和实施例对本发明的具体实施方式作进一步详细描述。以下实施例用于说明本发明,但不作为限制本发明的范围。
67.如图1至8所示,是根据本发明的实施例的一种智能光伏组件的单轴角度跟踪方法和系统,可通过采集功率优化器30电参量信息,解决在单轴跟踪支架50的跟踪角度难以有效在阴影遮挡比例影响和太阳高度角影响之间确定最优跟踪角度的问题,并使光伏发电系
统获得发电量获取更大,并且光伏组串40内电参量更为稳定。
68.可以理解地,单轴跟踪支架50可以是平单轴或者斜单轴的支架,其转轴沿南北方向设置,因此转轴的旋转可使光伏组件10的角度沿东西方向变化,而保持对太阳光线的跟踪。以平单轴组件跟踪支架为例,包含了立柱、主梁和檩条等的支撑结构;包含了电机、回转减速装置等的驱动机构。
69.可以理解地,“行方向”与“列方向”是便于理解技术方案的权宜描述,不应作为方向的必然限定,“行方向”是参考单轴跟踪支架50轴向相平行的方向,“列方向”是参考列方向是与单轴跟踪支架50轴向相垂直的方向。在光伏发电系统的一般布置上,便于理解本发明原理地,“行方向”是南北方向,而“列方向”是东西方向。
70.本实施例中提供的一种智能光伏组件的单轴角度跟踪方法
71.参考图1,该智能光伏组件的单轴角度跟踪方法法包括步骤:
72.s100,通过所述气象站70和气象采集单元61获得天气预报信息(阴雨天、多云、晴天情况)、太阳辐照信息(总辐照/直射辐照/散射辐照)、相对湿度、大气环境温度等信息。并且通过获取时间和经纬度,进一步计算获得高度角(在地球某点光入射时候的方向与地平面的角度)、方位角(光线落在地面上投射的影子和当地经线之间的角度)、赤维角(太阳赤角即日地中心连线和赤道面间的角度)。在已知地球某地的经度、维度、时区、当地时间,可以求得该地该时刻的太阳高度角和方位角。结合大气信息,得到经过大气折射修正的跟踪角初始值ac。
73.s200,根据当前天气情况,区别阴雨天、多云、晴天等不同天气模式,判断并确定单轴跟踪支架50的运行模式。
74.s201,若是进入阴天模式(或阴雨天),跟踪控制模块60发出指令,驱动单轴跟踪支架50转动并使光伏组件10的跟踪角a为零度或接近零点的固定角度固定,即光伏组件10水平接收光线,此时跟踪控制模块60停止角度跟踪的工作。
75.s202,若是进入多云模式,跟踪控制模块60发出指令,驱动单轴跟踪支架50转动并使光伏组件10的跟踪角a随时间跟随于传统天文跟踪角度ac,此处天文跟踪角度ac,不考虑逆跟踪仅从太阳角度计算跟踪最优角度。
76.s203,若是进入晴天模式,则进入阶段判断:
77.s203a,若当前是正午及其前后时间阶段,此时光伏组件10背面的下部区域可避开自阴影区域,直接接受地面的较强的反射太阳光,所获得的照度较高;而背面中部区域收到自阴影影响较大,主要依赖于大气对太阳光线的散射,所获得的照度较低;而顶部所获得照度在两者之间,其可获得较强的大气散射以及云彩的反射,则驱动单轴跟踪支架50转动并使光伏组件10的跟踪角a。
78.当前阶段跟踪角a的跟踪算法:采集单轴跟踪支架50上功率优化器30的功率信息;按照跟踪角的初始值ac在预设小角度调节单轴跟踪支架50的跟踪角;比较跟踪角调节前后功率优化器30在列方向上功率的差异,判断是否进一步调节跟踪角,直至当前跟踪角度在列方向上功率的差异满足预设要求,使跟踪角度最优化a;当所采集功率优化器30列方向上功率的差异超出预设条件,重新获取当前最佳跟踪角a。
79.更具体的,在角度跟踪支架的列方向上设置有上下两排光伏组件10(列方向的两成排的光伏组件10),每个光伏组件10设置有两个独立连接到功率优化器30的电池单元11,
而电池单元11是双面光伏电池片20组成的,为便于理解可分为,列方向分布的第一、第二、第三和第四成行的电池单元11。在行方向,各第一电池单元11、各第二电池单元11、各第三电池单元11和各第四电池单元11的总功率之间的差异要在预设要求之内,继而利用对天文跟踪角度ac的调节,平衡各电池单元11的背部辐照分布,继而稳定双面光伏组件10输出的稳定性。
80.可以理解的是,差异的算法是多样的,在一个实施方面,该差异算法可以是:(pmax-pmin)/(pmax+pmin),算法的结果满足(pmax-pmin)/(pmax+pmin)《1%,则是在预设要求之内。1%的数值是根据光伏系统的具体参数和天气等因素进行设定。由于第一、第二电池单元11是属于一个光伏组件10,第三和第四电池单元11是属于另一个光伏组件10,光伏组件10是在行方向上串联,在列方向的两个光伏组件10不直接串联,要采集功率优化器30的信息及对应的所在的行的关系,可以使用功率优化器30地址编码的方法,也可以使用按照行顺序分别采集优化器功率信息的方法。
81.s203b,若当前是早晚时间阶段,此时将出现光伏组件10以天文跟踪角度ac运行时,正面的光伏组件10将具有来自另一排组件的遮挡阴影,则驱动单轴跟踪支架50转动并使光伏组件10的跟踪角a。
82.当前阶段跟踪角a的跟踪算法:跟踪角a的获得方法为:采集单轴跟踪支架50上功率优化器30的功率信息,并获取各功率优化器30的总功率;按照跟踪角的初始值ac在预设小角度调节单轴跟踪支架50的跟踪角,比较跟踪角调节前后功率优化器30总功率差异,判断是否进一步调节跟踪角,直至累积小角度调节使功率优化器30的总功率的最大化,控制单轴跟踪支架50运行在当前最优跟踪角度a;当所采集功率优化器30总功率变化超出预设条件,重新获取当前最佳跟踪角a。
83.可以理解的是,差异的算法是多样的,可以是当前的时总功率pt和上一次确定最佳角度时总功率po,|(pt-po)/(pt+po)|《0.5%。0.5%的数值是根据光伏系统的具体参数和天气等因素进行设定。总功率可由所有的功率优化器30的功率之和确定,也可以是各行功率优化器30分别同数量采样获得的总功率。
84.更具体地,获取调节前的各功率优化器30总功率,并在初始值ac上在支架转轴方向小角度s地调节,若连续总功率减少,则以另一方向在初始值ac上调节小角度s,获得连续总功率增加后,当首次总功率减小情况下,确定上次为最优跟踪角度a。也可在预设的总功率增加方向上,进行小角度s的调节,以获得最优跟踪角度a。
85.可以理解的,在光伏发电系统的角度跟踪当中,可仅运行的可解决早晚相邻排支架的遮挡问题角度跟踪方法,基于功率优化器30总功率的最优,在相邻排遮挡和太阳高度角间确定最大发电量的跟踪角a;也可在双面光伏发电系统中,全天候运行背面优化的角度跟踪方法,基于一列优化器的功率差异,在背面辐照不均匀和正面太阳高度角间确定更为稳定的跟踪角a。
86.可以理解的,具体的跟踪所依据的功率优化器30的电参量是多样的,在串联的功率优化器30中,可以功率优化器30的输出电压,相近地方法获得最优跟踪角a。本发明特点在于,在天文算法计算的初始值ac,根据光伏组件10中电池单元11设置位置以及功率优化器30的电参量,相配合地确定支架的角度跟踪。
87.参考图2至8,本发明提供了一种智能光伏组件的单轴角度跟踪系统,该角度跟踪
系统包括光伏组件10、单轴跟踪支架50和跟踪控制模块60,并通过在光伏组件10的列方向上设置至少两个电池单元11,各光伏组件10是矩形,且矩形长边方向垂直于支架轴向的,而各电池单元11是由矩形短边方向的若干电池片串21连接而成,并利用功率优化器30独立优化地控制电池单元11以跟踪最大功率地运行,通过跟踪控制模块60,依照功率优化器30电参量信息,而可解决前后排遮挡阴影及背部辐照不均匀问题地,控制单轴跟踪支架50的运行。
88.参考图2,本实施例具体地,光伏组件10包括了两个电池单元11,各电池单元11独立连接有功率优化器30,若干光伏组件10相互以功率优化器30串联,并构成光伏组串40;光伏组串40以各光伏组件10竖向地安装在单轴跟踪支架50上;若干单轴跟踪支架50连接并受控于跟踪控制模块60。而跟踪控制模块60包括有优化器采集单元62,并通过功率采集单元获取对应单轴跟踪支架50,及对应光伏组件10,及对应功率优化器30的数据信息。跟踪控制模块60还包括有气象获取单元63,并可获取气象站70的信息,综合与气象数据信息和功率优化器30数据信息,而确定最优跟踪角度,并发送角度控制信号,控制各单轴跟踪支架50的运行。
89.参考图3,本实施例具体地,跟踪控制模块60包括模式判断单元64、气象获取单元63、天文处理单元、优化器采集单元62、优化控制单元66和跟踪判断单元65。跟踪控制模块60还包括:模式判断单元64和气象获取单元63;气象获取单元63,获取气象数据信息;模式判断单元64,根据气象数据信息运行于对应天气模式;若天气模式为阴雨天模式,则控制单轴跟踪支架50在零度或接近零点的固定角度固定;若天气模式为多云模式,则控制单轴跟踪支架50运行于天文跟踪角度ac;若天气模式为晴天模式,则判断单轴跟踪支架50运行阶段,若为早晚阶段,则根据功率优化器30的总功率信息,以及天文跟踪角度ac,确定最优跟踪角度;若为中午及前后阶段,则根据功率优化器30在列方向的功率信息差异,以及天文跟踪角度ac,确定最优跟踪角度。
90.本实施例具体地,参照图4,是本发明光伏组件10电路结构,光伏组件10由电池片呈矩形阵列排布并封装而成,区域等分的的电池片连接构成两个电池单元11,两个电池单元11分别包括上下区域各六串的由矩形短边方向呈行排布的电池片相互串联而成的电池片串21,各电池片串21矩形长边方向排布并相互串联和/或并联连接构成电池单元11的输出端,电池单元11的输出端连接有功率优化器30的输入端,各功率优化器30的输出端串联并作为光伏组件10的输出端。
91.更为具体的,在上下区域的电池单元11均有,其中的三串电池片串21极性朝向左侧并联,即正极左向第一串组221相互并联;另外的三串的电池片串21极性朝向右侧并联,即正极右向第二串组222相互并联;正极左向第一串组221和正极右向第二串组222相互串联,且串联的两个端对应连接到各功率优化器30输入端。上下区域的电池单元11对应的功率优化器30相互串联作为光伏组件10的输出端。其中在本方案中,为便于串接,正极左向第一串组221和正极右向第二串组222分别为相邻的三串电池片串21;在其他方案中,为使两个种电极朝向的串组分布均匀,正极左向的电池片串21相邻于正极右向的电池片串21。
92.参考图5,电池片可以是单面或者双面光伏发电的。在一方面,可在光的辐射下转化为电能,达到增加根据地形的反光效率的不同,增加5%至20%的发电量。特别地,对于双面光伏发电,本发明角度跟踪系统,优化背面辐照的接收性能。任意电池片串2121包含12块
半片电池片20a,通过导电焊带串联连接成串,使通过每根主栅的电流降低为原来的1/2,使半片组件内部功率耗损降低为整片组件的1/4,相对于6块整片电池片所构成的电池片串2121,本实施例的电流增加电压下降,但电池片的热损耗降低。
93.参考图6,在上述实施例的光伏组件10,在面对各种遮挡情况下的示例性的说明,并且还可以相近地应用到其他实施例当中。
94.在光伏组件10的正面有。下部的矩形阴影,示意性地表示早晚太阳入射角低而造成的前排遮挡后排的情况。特别的是,这个阴影是随时间移动的。本实施例中,最开始仅会遮挡下区域组件单元的最下方一串电池片,相当于组件单元的六串其中一串被遮挡;由于是并联后串联,其他五串受影响较小,而上区域组件单元不受影响,则光伏组件10功率损失一短边串电池片串21功率。若最终被遮挡了最下方的三串,则组件功率损失约三串电池片串21功率。
95.在光伏组件10的背面有。中上下密度依次递增的阴影,示意性地表示双面光伏组件10中,背面所接收太阳光照度的区别。本实施例中,以单排光伏组件10为示例,上区域组件单元接收了顶部较强辐照和部分中部的较弱辐照,下区域组件单元接收了另一部分中部较弱辐照和底部较强辐照,且各电池片串21所接收的照度相接近;在功率优化器303对最大功率点的跟踪,上下区域光伏组件10均可运行在接近最大功率点的电压位置,内部具有并联结构,使各串电池片串21均可充分将辐照转化为电能。中部上下矩形阴影,示意性地表示双面光伏组件10中背部两个支撑檩条的遮挡情况。本实施例中,仅两个组件单元中的两个串短边电池片串21受到影响。
96.参考图7,在本发明各实施例中有,各功率优化器30为设有最大功率跟踪单元32的buck型降压式dc/dc转换模块31。在其他实施例中,功率优化器30还可以是boost升压式,或者boost-buck升降压式。各功率优化器30输出端相串联,串联后构成光伏组件10的输出端。dc/dc转换模块31设置有主控模块,其可优化输入及输出端的电参量。最大功率跟踪单元32,即图中mppt。其可依据检测功率优化器30的输出电参量跟踪电池单元11的最大功率点,并通过脉冲宽度调制单元33,即图中pwm,控制dc/dc转换模块31中功率管的占空比。
97.参考图8,本实施例的光伏组件10安装于单轴跟踪支架50上,每个光伏组件10都采用竖装的方式安装。单轴跟踪支架50背部的四个檩条即可实现支撑4块光伏组件10的安装,且螺孔的安装位置更少。本实施例的光伏发电系统在电路结构上,各电池单元11的功率优化器30,其串联的输出端作为光伏组件10的输出端。各光伏组件10的输出端依次串联成光伏组串40,光伏组串40的输出端直接或通过直流汇流箱连接到光伏逆变器光伏组串40包括上下两个矩形短边水平安装的若干光伏组件10,其中在上下两个排结构的一端有,该端的光伏组件10的上下两个端口相串联;其中在上下两个排结构的另一端有,该端的光伏组件10的上下两个端口作为光伏组串40的输出端。该方案仅需要将左右相邻的光伏组件10相连接以及一端上下的光伏相连接,可以大量节省连接的线材。传统采用该连接方案,由于前后排遮挡,上下排之间会出现电流的失配,但在功率优化器30的作用下,下排的电池单元11可跟踪运行在最大功率点上,并调节功率优化器30的输出电压匹配组串电流的变化,使上下排均能运行在最大功率点,避免开失配的影响。
98.综上所述,并参考图8,本发明的方法和系统在实际的运行原理如下:在判断为晴天模式下,太阳光可直射于光伏发电系统。早晚阶段,在一列的两个光伏组件10中,其最下
或上方的电池单元11会出现前后排阴影遮挡,通过采集各功率优化器30的总功率信息,并通过跟踪控制模块60随天文跟踪角度ac调节设定角度,可在太阳高度角和正面阴影遮挡间,通过回转确定最优跟踪角度;在正午及前后阶段,背部辐照会不均匀,可通过跟踪控制模块60随天文跟踪角度ac调节设定角度,通过增加转角或者回转确定最优跟踪角度,使不同强度的背部辐照更为均匀地照射于各电池单元11中,并在功率优化器30作用下跟踪最大功率点。同时,各电池片串21是矩形短边串联而成,适合于安装成本更低的竖向安装,支架上各光伏组件10之间采用c型的串联方式,也进一步降低接线成本。在降低成本而提升发电量,并且可抵抗电压不均衡的综合作用下,使单轴跟踪支架50可具备实用性地应用于大型光伏电站当中。
99.以上实施例主要描述了本发明的基本原理、主要特征和优点。本行业的技术人员应该了解,本发明不受上述实施例的限制,上述实施例和说明书中描述的只是说明本发明的原理,在不脱离本发明精神和范围的前提下,本发明还会有各种变化和改进,这些变化和改进都落入要求保护的本发明范围内。
100.以上所述仅为本发明示例性的实施例。通过上述内容,本领域技术人员完全可以在不偏离本发明技术构思的基础上进行变更及修改。本发明的保护范围并不局限于上述实施例,而是以权利要求限定的范围为准。
技术特征:
1.一种智能光伏组件的单轴角度跟踪方法,其特征在于,应用于可角度跟踪的光伏发电系统,所述光伏发电系统包括至少一个单轴跟踪支架(50),所述单轴跟踪支架(50)在行方向安装有若干光伏组件(10),所述光伏组件(10)包含由封装于光伏组件(10)内同数量的电池片串/并联成的在列方向分布的至少两个电池单元(11),所述电池单元(11)连接有功率优化器(30),各所述功率优化器(30)串联并作为光伏组件(10)输出端;该角度跟踪方法包括:根据预设天文算法计算得到跟踪角参考值ac;采集单轴跟踪支架(50)上的功率优化器(30)的电参量信息;在当前跟踪角参考值ac基础上,根据所获得的电参量信息以满足发电量最大化地调节优化角度,并控制单轴跟踪支架(50)运行在该最佳跟踪角a;当电参量信息的变化超出预设要求,重新获取当前最佳跟踪角a。2.根据权利要求1所述的智能光伏组件的单轴角度跟踪方法,其特征在于,由功率优化器(30)的电参量信息的角度跟踪方法包括:采集单轴跟踪支架(50)上功率优化器(30)的功率信息,并获取各功率优化器(30)的总功率;按照跟踪角的初始值ac在预设小角度调节单轴跟踪支架(50)的跟踪角,比较跟踪角调节前后功率优化器(30)总功率差异,判断是否进一步调节跟踪角,直至累积小角度调节使功率优化器(30)的总功率的最大化,控制单轴跟踪支架(50)运行在当前最优跟踪角度a;当所采集功率优化器(30)总功率变化超出预设条件,重新获取当前最佳跟踪角a。3.根据权利要求1所述的智能光伏组件的单轴角度跟踪方法,其特征在于,应用于所述光伏组件(10)为双面发电组件;由功率优化器(30)的电参量信息的角度跟踪方法包括:采集单轴跟踪支架(50)上功率优化器(30)的功率信息;按照跟踪角的初始值ac在预设小角度调节单轴跟踪支架(50)的跟踪角;比较跟踪角调节前后功率优化器(30)在列方向上功率的差异,判断是否进一步调节跟踪角,直至当前跟踪角度在列方向上功率的差异满足预设要求,使跟踪角度最优化a;当所采集功率优化器(30)列方向上功率的差异超出预设条件,重新获取当前最佳跟踪角a。4.根据权利要求1所述的智能光伏组件的单轴角度跟踪方法,其特征在于,应用于所述光伏组件(10)为双面发电组件;该角度跟踪方法还包括:采集气象数据信息,并判断出控制所述单轴跟踪支架(50)的运行模式;若天气模式为晴天模式,则判断所处阶段,控制所述单轴跟踪支架(50)运行于经优化角度s调节的天文跟踪角度ac,确定最佳跟踪角度。若为早晚阶段,在天文跟踪角度a上,根据功率优化器(30)的总功率信息变化,确定最佳跟踪角度;若为中午及前后阶段,在天文跟踪角度a上,则根据功率优化器(30)在列方向上功率信息的变化,确定最佳跟踪角度。5.根据权利要求4所述的智能光伏组件的单轴角度跟踪方法,其特征在于,所述单轴跟踪支架(50)的运行模式还包括:
若天气模式为阴/雨天模式,则控制所述单轴跟踪支架(50)在水平及水平附近位置的固定角度固定;若天气模式为多云模式,则控制所述单轴跟踪支架(50)运行于天文跟踪角度ac。6.一种智能光伏组件的单轴角度跟踪系统,其特征在于,该角度跟踪系统包括:光伏组件(10)、单轴跟踪支架(50)和跟踪控制模块(60);所述光伏组件(10)由电池片呈矩形阵列排布并封装而成,区域等分的所述的电池片连接构成至少两个电池单元(11),所述电池单元(11)包括多串由矩形短边方向呈行排布的电池片相互串联而成的电池片串(21),各所述电池片串(21)矩形长边方向排布并相互串联和/或并联连接构成电池单元(11)的输出端,所述电池单元(11)的输出端连接有功率优化器(30)的输入端,各所述功率优化器(30)的输出端串联并作为光伏组件(10)的输出端;所述单轴跟踪支架(50)在行方向沿矩形长边竖向地安装有若干光伏组件(10),所述单轴跟踪支架(50)连接并受控于所述跟踪控制模块(60);所述跟踪控制模块(60)由预设天文算法计算得到跟踪角参考值ac,采集单轴跟踪支架(50)上的功率优化器(30)的电参量信息,根据该电参量信息在参考值ac的调节上控制所述单轴跟踪支架(50)运行在最佳跟踪角度a。7.根据权利要求6所述的智能光伏组件的单轴角度跟踪系统,其特征在于,所述跟踪控制模块(60)包括:天文处理单元、优化器采集单元(62)、优化控制单元(66)和跟踪判断单元(65);所述天文处理单元,根据预设天文算法计算得到跟踪角的初始值ac;所述优化器采集单元(62),采集单轴跟踪支架(50)上功率优化器(30)的功率信息,并获取各功率优化器(30)的总功率;所述优化控制单元(66),按照跟踪角的初始值ac在预设小角度调节单轴跟踪支架(50)的跟踪角,比较跟踪角调节前后功率优化器(30)总功率差异,判断是否进一步调节跟踪角,直至累积小角度调节使功率优化器(30)的总功率的最大化,控制单轴跟踪支架(50)运行在当前最优跟踪角度a;所述跟踪判断单元(65),判断功率优化器(30)总功率变化是否超出预设条件,以维持单轴跟踪支架(50)运行于最佳跟踪角a。8.根据权利要求6所述的智能光伏组件的单轴角度跟踪系统,其特征在于,所述跟踪控制模块(60)包括:天文处理单元、优化器采集单元(62)、优化控制单元(66)和跟踪判断单元(65);所述天文处理单元,根据预设天文算法计算得到跟踪角的初始值ac;所述优化器采集单元(62),采集单轴跟踪支架(50)上功率优化器(30)的功率信息,并获得功率优化器(30)在列方向上功率的差异;所述优化控制单元(66),按照跟踪角的初始值ac在预设小角度调节单轴跟踪支架(50)的跟踪角,比较跟踪角调节前后功率优化器(30)在列方向上功率的差异,判断是否进一步调节跟踪角,直至当前跟踪角度在列方向上功率的差异满足预设要求,使跟踪角度最优化a。所述跟踪判断单元(65),比较判断调节前后的在列方向上各功率优化器(30)的功率信息的差异变化是否超出预设要求,以维持单轴跟踪支架(50)运行于最佳跟踪角a。
9.根据权利要求6所述的智能光伏组件的单轴角度跟踪系统,其特征在于,所述跟踪控制模块(60)还包括:模式判断单元(64)和气象获取单元(63);所述气象获取单元(63),获取气象数据信息;所述模式判断单元(64),根据气象数据信息运行于对应天气模式;若天气模式为阴雨天模式,则控制所述单轴跟踪支架(50)在零度或接近零点的固定角度固定;若天气模式为多云模式,则控制所述单轴跟踪支架(50)运行于天文跟踪角度ac;若天气模式为晴天模式,则判断所述单轴跟踪支架(50)运行阶段,若为早晚阶段,则根据功率优化器(30)的总功率信息,以及天文跟踪角度ac,确定最佳跟踪角度;若为中午及前后阶段,则根据功率优化器(30)在列方向的功率信息差异,以及天文跟踪角度ac,确定最佳跟踪角度。10.根据权利要求6所述的智能光伏组件的单轴角度跟踪系统,其特征在于,所述电池单元(11)中有,部分的所述电池片串(21)同一极性朝向地相互并联构成第一串组(221),相同数量的另一部分的所述电池片串(21)相反极性朝向地相互并联构成第二串组(222),所述第一串组(221)和第二串组(222)相互串联,并且串联的两端连接于功率优化器(30);极性朝向相同的各所述电池片串(21)相邻地排列,或者,极性朝向相反的各所述电池片串(21)相邻地排列;所述单轴跟踪支架(50)安装有至少两排的光伏组件(10);所述功率优化器(30)为光伏最大功率跟踪的dc/dc转换模块(31)。
技术总结
本发明公开了一种智能光伏组件的单轴角度跟踪方法和系统,涉及光伏发电的支架追日自动跟踪领域,其包括多电池单元并带有功率优化器的光伏组件、单轴跟踪支架和跟踪控制模块,使单个电池单元背面阴影和前后排遮挡一致,避免各电池单元之间遮挡阴影相互影响,而功率优化器令组件在最大功率运行,并其参数共享于跟踪控制模块,并利用功率优化器的电参量信息,在天文算法的基础调节并以最优跟踪角度控制单轴跟踪支架,能降低阴影遮挡对功率影响同时,使阳光入射角度的获取最优辐照量,进而获取最优的光伏发电功率,使大型光伏电站中可实效性地配备单轴跟踪系统,达到能在大幅降低平准化度成本的目的。准化度成本的目的。准化度成本的目的。
技术研发人员:宋悦 陈泽熙
受保护的技术使用者:广州中旭新能源有限公司
技术研发日:2020.11.23
技术公布日:2022/5/25
转载请注明原文地址:https://tc.8miu.com/read-15461.html