1.本发明涉及一种基于双向开关控制的级联整流式锂电池均衡器,属于电力电子变换器领域。
背景技术:
2.近年来,锂电池在航空、航天、智能微电网储能系统、电动汽车动力电池等领域获得了广泛的应用。为获得足够高的电压与足够的容量,需要将锂电池单体串联成为锂电池包以后再使用。由于电池单体间特性存在差异,在多次充放电以后,各串联的锂电池单体出现荷电状态(soc)以及电压不一致的情况,长期运行会出现过充电与过放电,对电池单体的寿命、容量以及安全将产生不利影响。soc差异通常反映在单体电压存在差异,因此电压均衡功能是串联使用的锂电池包必须具备的功能。
3.目前,锂电池均衡器分为能耗型均衡器与非能耗型均衡器,由于能耗型均衡器具有效率低、热管理困难等问题,因此,非能耗型均衡器得到了广泛的应用。非能耗型均衡器又分为有源均衡器与无源均衡器。有源均衡器主要采用开关管主动实现电池单体间的能量与电压的均衡,常见的方式有开关电容及其衍生拓扑、开关电感及其衍生拓扑、双向cuk均衡器、双向反激均衡器等,对于单体串联数量多、电压高的电池包均衡损耗较大。非能耗无源均衡器由于其控制简单、成本低而受到广泛的关注。
4.目前的无源均衡器有两种实现方式,分别是
①
采用变压器单副边绕组+隔直电容的方式与
②
多变压器绕组+级联整流电路的方案。但第
①
种实现方式种采用了较多的大容量电容,一旦电容容值变小,均衡效果将大受影响;第
②
种实现方式种需要采用2个二极管参与锂电池单元的充电,由于锂电池单元本身电压较低,而2个二极管的压降约为1.4v,直接导致均衡器的效率变得很低。
5.因此,采用易于实现、成本低的非能耗无源均衡器的基础上,需要进一步提升均衡器的均衡效果和均衡效率,本方案由此产生。
技术实现要素:
6.发明目的:针对非能耗无源均衡器效率低、均衡效果差的缺点,本发明提出一种基于双向开关控制的级联整流式锂电池均衡器。
7.技术方案:一种基于双向开关控制的级联整流式锂电池均衡器,包含逆变器、缓冲电感、双向开关、多绕组高频变压器、n个级联的整流器,被均衡的锂电池包含有2n个锂电池单元(b
11
、b
12
、b
21
、b
22
……
、b
n1
、b
n2
)以正负极相连接的方式串联。
8.锂电池包中将电池单元分为n组,其中第i(i=1,2
……
,n)锂电池组中包含两节锂电池单元b
i1
、b
i2
,b
i1
的负极作为第i锂电池组的负极,b
i2
的正极作为第i锂电池组的正极,b
i1
的正极与b
i2
的负极连接并作为第i锂电池组的中间极;第i整流器由两个二极管d
i1
、d
i2
,d
i1
的阳极连接到第i锂电池组的负极,d
i2
的阴极连接到第i锂电池组的正极;d
i1
的阴极连接到d
i2
的阳极并作为第i整流器的中间极;第j(j=1,2
……
,(n-1))锂电池组的正极与第(j+
1)锂电池组的负极连接;第1锂电池组的负极作为锂电池包的负极,第n锂电池组的正极作为锂电池包的正极。
9.逆变器由四个开关管组成,分别是开关管s1、s2、s3、s4;s1的漏极、s3的漏极共同连接到锂电池包的正极;s2的源极、s4的源极共同连接到锂电池包的负极;s3的源极、s4的漏极共同连接到缓冲电感l的第一端;双向开关由开关管s5与s6构成,s5的源极与s6的源极连接在一起,s5的漏极作为双向开关的第一端,s6的漏极作为双向开关的第二端;双向开关的第一端与缓冲电感l的第二端连接,双向开关的第二端与多绕组高频变压器的原边绕组同名端连接;s1的源极、s2的漏极与多绕组高频变压器的原边绕组异名端连接在一起。
10.多绕组高频变压器含有n个副边绕组;多绕组高频变压器第i(i=1,2
……
,n)副边绕组同名端连接到第i整流器的中间极;多绕组高频变压器第i副边绕组异名端连接到第i锂电池组的中间极。
11.一种基于双向开关控制的级联整流式锂电池均衡器中,将两个电池单元与两个二极管共同构成倍压整流器,有效的降低了一个电池单元需要配备的二极管数量,可降低成本。
12.一种基于双向开关控制的级联整流式锂电池均衡器中,2n个锂电池单元可分为奇数组电池单元b
i1
(i=1,2
……
,n)与偶数组电池单元b
i2
(i=1,2
……
,n);通过如权利要求1所述的双向开关,可以实现对奇数组电池单元与偶数组电池单元之间的快速均衡。
13.有益效果:本发明所提一种基于双向开关控制的级联整流式锂电池均衡器实施以后,给电池单元充电回路中仅包含1个二极管,有效降低了充电损耗,提升了均衡器的效率;采用双向开关控制奇数组单元与偶数组单元分别均衡,可有效实现奇、偶数组电池单元之间的快速均衡,提升了均衡效果;上述两个有益效果可大大提升本发明所提电池均衡器的市场竞争力。
附图说明
14.图1为本发明所公开的基于双向开关控制的级联整流式锂电池均衡器主电路拓扑;
15.图2为本发明所公开的基于双向开关控制的级联整流式锂电池均衡器在奇、偶数组电池单元电压平衡时运行波形;
16.图3为本发明所公开的基于双向开关控制的级联整流式锂电池均衡器在奇、偶数组电池单元电压平衡时运行模态1;
17.图4为本发明所公开的基于双向开关控制的级联整流式锂电池均衡器在奇、偶数组电池单元电压平衡时运行模态2;
18.图5为本发明所公开的基于双向开关控制的级联整流式锂电池均衡器在奇、偶数组电池单元电压平衡时运行模态3;
19.图6为本发明所公开的基于双向开关控制的级联整流式锂电池均衡器在奇、偶数组电池单元电压平衡时运行模态4;
20.图7为本发明所公开的基于双向开关控制的级联整流式锂电池均衡器在奇、偶数组电池单元电压平衡时运行模态5;
21.图8为本发明所公开的基于双向开关控制的级联整流式锂电池均衡器在奇、偶数
组电池单元电压平衡时运行模态6;
22.图9为本发明所公开的基于双向开关控制的级联整流式锂电池均衡器在偶数组电池单元电压低于奇数组电池单元电压时的运行波形;
23.图10为本发明所公开的基于双向开关控制的级联整流式锂电池均衡器在奇数组电池单元电压低于偶数组电池单元电压时的运行波形;
24.图11为本发明所公开的基于双向开关控制的级联整流式锂电池均衡器的等效电路;
25.图中符号名称:s
1-s6——第一开关管-第六开关管;u
ab
——逆变器输出交流电压;u'
ab
——逆变器输出交流电压折算到变压器副边后的电压;l——缓冲电感;l'——缓冲电感折算到变压器副边后的电感值;i
l
——缓冲电感电流;i'
l
——缓冲电感电流折算到变压器副边后的电流值;t——多绕组高频变压器;w
p
——多绕组高频变压器原边绕组;w
s1-w
sn
——多绕组高频变压器第一副边绕组-第n副边绕组;d
11-d
n1
——奇数组整流二极管;d
12-d
n2
——偶数组整流二极管;b
11-b
n1
——奇数组电池单元;b
12-b
n2
——偶数组电池单元;u
b11-u
bn1
——奇数组电池单元电压;u
b12-u
bn2
——偶数组电池单元电压;i
b1
——奇数组电池单元充电电流;i
b2
——偶数组电池单元充电电流;u
gs1-u
gs6
——第一开关管-第六开关管的驱动信号。
具体实施方式
26.下面结合具体实施例,进一步阐明本发明,应理解这些实施例仅用于说明本发明而不用于限制本发明的范围,在阅读了本发明之后,本领域技术人员对本发明的各种等价形式的修改均落于本技术所附权利要求所限定的范围。
27.本发明所公开的基于双向开关控制的级联整流式锂电池均衡器主电路拓扑如图1所示。包含逆变器、缓冲电感、双向开关、多绕组高频变压器、n个级联的整流器,被均衡的锂电池包含有2n个锂电池单元(b
11
、b
12
、b
21
、b
22
……
、b
n1
、b
n2
)以正负极相连接的方式串联。
28.锂电池包中将电池单元分为n组,其中第i(i=1,2
……
,n)锂电池组中包含两节锂电池单元b
i1
、b
i2
,b
i1
的负极作为第i锂电池组的负极,b
i2
的正极作为第i锂电池组的正极,b
i1
的正极与b
i2
的负极连接并作为第i锂电池组的中间极;第i整流器由两个二极管d
i1
、d
i2
,d
i1
的阳极连接到第i锂电池组的负极,d
i2
的阴极连接到第i锂电池组的正极;d
i1
的阴极连接到d
i2
的阳极并作为第i整流器的中间极;第j(j=1,2
……
,(n-1))锂电池组的正极与第(j+1)锂电池组的负极连接;第1锂电池组的负极作为锂电池包的负极,第n锂电池组的正极作为锂电池包的正极。
29.逆变器由四个开关管组成,分别是开关管s1、s2、s3、s4;s1的漏极、s3的漏极共同连接到锂电池包的正极;s2的源极、s4的源极共同连接到锂电池包的负极;s3的源极、s4的漏极共同连接到缓冲电感l的第一端;双向开关由开关管s5与s6构成,s5的源极与s6的源极连接在一起,s5的漏极作为双向开关的第一端,s6的漏极作为双向开关的第二端;双向开关的第一端与缓冲电感l的第二端连接,双向开关的第二端与多绕组高频变压器的原边绕组同名端连接;s1的源极、s2的漏极与多绕组高频变压器的原边绕组异名端连接在一起。
30.多绕组高频变压器含有n个副边绕组;多绕组高频变压器第i(i=1,2
……
,n)副边绕组同名端连接到第i整流器的中间极;多绕组高频变压器第i副边绕组异名端连接到第i
锂电池组的中间极。
31.图1所示的本发明公开的基于双向开关控制的级联整流式锂电池均衡器中,2n个锂电池单元可分为奇数组电池单元b
i1
(i=1,2
……
,n)与偶数组电池单元b
i2
(i=1,2
……
,n)。
32.图1所示的本发明公开的基于双向开关控制的级联整流式锂电池均衡器中,逆变器采用移相控制策略,对应的开关管s
1-s4的驱动信号u
gs1-u
gs4
波形如图2所示,在奇数组电池单元与偶数组电池单元各自的最低电压相等时,开关管s
5-s6的驱动信号保持为高电平,变压器副边的级联整流器分别实现对奇数组电池单元b
i1
(i=1,2
……
,n)与偶数组电池单元b
i2
(i=1,2
……
,n)内部的各电池单元进行均衡,缓冲电感电流如图2所示。在一个开关周期内,均衡器运行可以分为6个模态,分别对应图3至图8,由于模态3与模态6运行一致,因此模态3与模态6对应的图5与图8的运行情况一致,即图5与图8电流流通路径相同。
33.模态1[图3]:t0时刻,开关管s4导通,逆变器输出电压u
ab
由0变正,缓冲电感电流从零开始上升,直至t1时刻开关管s1关断为止。此阶段中,变压器副边电路的级联整流器给奇数组电池单元充电,如果各单元电压相等,则电池单元均分变压器副边电流;如果其中一个电池单元的电压比任何其他组内电池单元的电压低,则该电压最低的电池单元接收全部的变压器副边电流,而其他电池单元充电电流为0。
[0034]
模态2[图4]:t1时刻,开关管s1关断,逆变器输出电压u
ab
由正值变为0,缓冲电感电流从最大值开始下降,直至t2时刻缓冲电感电流下降到0为止。此阶段中,变压器副边电路的级联整流器给奇数组电池单元充电,具体情况同模态1。
[0035]
模态3[图5]:t2时刻缓冲电感电流下降到0,此阶段中变压器原副边均无电流,直至t3时刻,开关管s3开通。
[0036]
t3时刻以后,电路开始负半周期的工作过程,其各量均与前3个模态对称,对应模态图分别对应图6-图8,这里不再赘述。
[0037]
如果奇数组、偶数组的电池单元最低电压存在差异,则控制双向开关仅在半周期内能通过电流,使得缓冲电感电流仅在半个开关周期内流通,仅给奇数组电池单元进行充电或仅给偶数组电池单元进行充电。在偶数组电池单元中最低单元电压低于奇数组电池单元中最低单元电压时,双向开关中,开关管s5开通、s6关断,如图9所示,此时,缓冲电感仅在正半周期内有电流流过,变压器副边电路的级联整流器仅给偶数组电池单元充电;在奇数组电池单元中最低单元电压低于偶数组电池单元中最低单元电压时,双向开关中,开关管s6开通、s5关断,如图10所示,此时,缓冲电感仅在负半周期内有电流流过,变压器副边电路的级联整流器仅给奇数组电池单元充电。
[0038]
通过以上分析,我们可以得出本发明所公开均衡器的等效电路如图11所示,其具有一下特征:
①
奇数组、偶数组中各自最低电压电池单元的相等时,双向开关电流可以双向流通,均衡器分别对奇数组、偶数组中电池单元进行均衡;
②
在奇数组电池单元中最低单元电压低于偶数组电池单元中最低单元电压时,控制双向开关,使得缓冲电感电流在正半周期保持为零,在负半周期仅对奇数组电池单元进行均衡,可快速实现奇数组电池单元电压跟踪上偶数组电池单元电压;
③
在偶数组电池单元中最低单元电压低于奇数组电池单元中最低单元电压时,控制双向开关,使得缓冲电感电流在负半周期保持为零,在正半周期仅对偶数组电池单元进行均衡,可快速实现偶数组电池单元电压跟踪上奇数组电池单元电压。
[0039]
图11所示的均衡等效电路中,双向开关中的开关管s5、s6的体二极管的方向分别与整流器中的二极管d
i1
(i=1,2
……
,n)以及d
i2
(i=1,2
……
,n)连接方式一致,因此奇数组电池单元与偶数组电池单元的前级双向开关可分别用1个开关管串联即可。
[0040]
综上所述,本发明公开的基于双向开关控制的级联整流式锂电池均衡器主电路拓扑不仅减少了无源均衡器中二极管的数量,提升了均衡效率,而且可以通过双向开关的控制,实现奇数组、偶数组电池单元间的快速均衡,保证了均衡的快速性以及所公开均衡器的实用性。
技术特征:
1.一种基于双向开关控制的级联整流式锂电池均衡器,其特征在于,包含逆变器、缓冲电感、双向开关、多绕组高频变压器、n个级联的整流器,被均衡的锂电池包含有2n个锂电池单元(b
11
、b
12
、b
21
、b
22
……
、b
n1
、b
n2
)以正负极相连接的方式串联;锂电池包中将电池单元分为n组,其中第i(i=1,2
……
,n)锂电池组中包含两节锂电池单元b
i1
、b
i2
,b
i1
的负极作为第i锂电池组的负极,b
i2
的正极作为第i锂电池组的正极,b
i1
的正极与b
i2
的负极连接并作为第i锂电池组的中间极;第i整流器由两个二极管d
i1
、d
i2
,d
i1
的阳极连接到第i锂电池组的负极,d
i2
的阴极连接到第i锂电池组的正极;d
i1
的阴极连接到d
i2
的阳极并作为第i整流器的中间极;第j(j=1,2
……
,(n-1))锂电池组的正极与第(j+1)锂电池组的负极连接;第1锂电池组的负极作为锂电池包的负极,第n锂电池组的正极作为锂电池包的正极;逆变器由四个开关管组成,分别是开关管s1、s2、s3、s4;s1的漏极、s3的漏极共同连接到锂电池包的正极;s2的源极、s4的源极共同连接到锂电池包的负极;s3的源极、s4的漏极共同连接到缓冲电感l的第一端;双向开关由开关管s5与s6构成,s5的源极与s6的源极连接在一起,s5的漏极作为双向开关的第一端,s6的漏极作为双向开关的第二端;双向开关的第一端与缓冲电感l的第二端连接,双向开关的第二端与多绕组高频变压器的原边绕组同名端连接;s1的源极、s2的漏极与多绕组高频变压器的原边绕组异名端连接在一起;多绕组高频变压器含有n个副边绕组;多绕组高频变压器第i(i=1,2
……
,n)副边绕组同名端连接到第i整流器的中间极;多绕组高频变压器第i副边绕组异名端连接到第i锂电池组的中间极;2.一种基于双向开关控制的级联整流式锂电池均衡器,其特征在于,将两个电池单元与两个二极管共同构成倍压整流器,有效的降低了一个电池单元需要配备的二极管数量,可降低成本;3.一种基于双向开关控制的级联整流式锂电池均衡器,其特征在于,2n个锂电池单元可分为奇数组电池单元b
i1
(i=1,2
……
,n)与偶数组电池单元b
i2
(i=1,2
……
,n);通过如权利要求1所述的双向开关,可以实现对奇数组电池单元与偶数组电池单元之间的快速均衡。
技术总结
本发明公开一种基于双向开关控制的级联整流式锂电池均衡器,包括逆变器、缓冲电感、双向开关、多绕组高频变压器、n个级联的整流器,锂电池包含有2n个锂电池单元,并按照串联的顺序归两类,分别为奇数组单元与偶数组单元。本发明采用比电池单元数量少得多的有源开关管以及数量相等的无源二极管进行控制,一方面减少了器件的数量,简化了控制,并降低了成本;另一方面双向开关的引入可以实现奇数组单元与偶数组单元之间的快速均衡。偶数组单元之间的快速均衡。偶数组单元之间的快速均衡。
技术研发人员:阚加荣 王琳 郑皓文 刘秋怡 章学勤 温俊豪 成乾
受保护的技术使用者:盐城工学院
技术研发日:2022.03.15
技术公布日:2022/5/25
转载请注明原文地址:https://tc.8miu.com/read-15616.html