1.本发明涉及工程技术领域,更具体的说是涉及一种考虑监测误差的航空发动机气路健康状态预测方法。
背景技术:
2.航空发动机气路良好的健康状态是飞机整体飞行安全的重要保障。合理对航空发动机气路进行健康状态预测可以实现最佳的维护决策,并有效减少系统故障所造成的人员伤亡和经济损失。在飞机飞行中,航空发动机气路通过监测系统的多个性能参数监测系统性能,以确保在复杂工况下的可靠运行。
3.目前主要有基于数据、基于模型的方法和基于定性知识的健康状态预测方法。基于数据驱动的智能学习模型是基于大量的观测数据,以建立非线性模型来预测航空发动机气路的健康状况。但对于航空发动机气路系统,难以获得种类齐全的监测数据。基于模型的方法是建立精确数学分析模型,由于系统的复杂性和耦合特性,建立准确的健康预测模型以反映未来行为的动态变化也很困难。基于定性知识的方法可以对基于专家知识的系统进行分析和建模,但太依赖于专家知识,会导致预测结果不够精确。
4.置信规则库(belief rule base,brb)是一种出色的建模方法,可以充分利用各种知识,包括定量知识,定性知识(例如专家经验)和半定量信息。brb健康状态预测模型可以较好的预测航空发动机气路的健康状态。然而,由于外部环境干扰(噪声,振动等)以及传感器跟踪能力的下降,监测数据可能受一些干扰因素影响,存在误差。现有的航空发动机气路健康状态预测方法大多是直接将不可靠的监测数据直接作为输入,没有考虑和细化监测数据的误差。这种航空发动机气路的健康状态的预测方式虽然能够起到对航空发动机气路健康状态进行预测的作用,但是预测精度不高。
5.因此,如何实现对航空发动机气路健康状态的精确预测是本领域技术人员亟需解决的问题。
技术实现要素:
6.有鉴于此,本发明提供了一种考虑监测误差的航空发动机气路健康状态预测方法,具体为预测考虑监测误差的基于多特征置信规则库的航空发动机气路的健康状态预测方法,包括以下步骤:1、分析监测数据出现监测误差的原因,并计算由环境干扰引起的环境特征监测误差和由传感器退化引起的传感器退化监测误差;2、综合计算监测误差;3、计算考虑监测误差的属性权重,并计算多特征置信规则库(multi-feature belief rule base,mbrb)的新激活权重;4、根据专家知识和新的激活权重建立初始mbrb预测模型;5、将投影协方差矩阵的自适应演化策略(the adaptive evolution strategy of projection covariance matrix,p-cma-es)作为优化算法对初始参数进行更新,得到航空发动机气路的健康状态预测模型。本发明通过建立考虑了监测数据的综合监测误差的健康状态预测模型,可以提高航空发动机气路健康状态预测的精度。
7.为了实现上述目的,本发明采用如下技术方案:
8.一种考虑监测误差的航空发动机气路健康状态预测方法,包括以下具体步骤:
9.步骤1:采集航空发动机的监测数据作为输入特征量,通过分析受环境干扰出现误差,计算环境特征监测误差;
10.步骤2:根据所述输入特征量,通过分析受传感器退化出现误差,计算传感器退化监测误差;
11.步骤3:通过设定干扰因子,根据所述环境特征监测误差和所述传感器退化监测误差计算整体监测误差;
12.步骤4:根据所述整体监测误差计算基于多特征置信规则库中的属性权重,并根据多特征置信规则库中两个相邻规则中的输入特征量参考值计算输入特征量的匹配度,根据所述属性权重和所述输入特征量参考值计算激活权重;
13.步骤5:根据专家知识设定初始置信度,并结合所述激活权重建立初始mbrb预测模型;
14.步骤6:采用基于投影协方差矩阵的自适应演化策略优化算法,对所述初始mbrb预测模型中的参数向量进行更新,获得健康状态预测模型;
15.步骤7:采集待预测的航空发动机的监测数据并输入所述健康状态预测模型,获得预测结果。
16.优选的,所述步骤1中采用平均距离方法根据所述监测数据计算环境特征监测误差,具体过程如下:
17.步骤11:设定采集的监测数据作为构建预测模型的输入特征量,所述初始mbrb预测模型的第n个输入特征量的输入数据为xn(1),xn(2),...,xn(i),则每个数据与其他数据之间的距离为:
18.dn(xn(i),xn(i
′
))=|xn(i)-xn(i
′
)|
ꢀꢀꢀꢀ
(1)
19.其中,xn(i)表示第n个输入特征量中的第i个数据,i,i
′
∈{1,...,i};
20.步骤12:环境特征引起的数据波动的幅度用平均距离来反映,根据每个数据与其他数据之间的距离计算第n个输入特征量中的第i个数据与其他数据之间的平均距离,表达式为:
[0021][0022]
步骤13:根据平均距离与最大距离计算所述环境特征监测误差;
[0023]
数据的环境特征监测误差用平均距离与数据最大距离的比值来反映,则第n个输入特征量中的第i个数据的环境特征监测误差表示为:
[0024][0025]
则第n个输入特征量的环境特征监测误差为:
[0026][0027]
优选的,所述步骤2中采用平均方差方法根据所述监测数据计算传感器退化监测误差,具体过程如下:
[0028]
步骤21:计算所有监测数据的平均值:
[0029][0030]
xn(i)表示第n个输入特征量中的第i个数据;
[0031]
步骤22:传感器退化引起的数据波动的幅度用平均方差来反映,根据所有监测数据的平均值计算第n个输入特征量中的第i个数据与其他数据之间的平均方差:
[0032][0033]
步骤23:数据的环境特征监测误差用平均方差与最大方差的比值来反映,则根据平均方差和最大方差计算第n个输入特征量中的第i个数据的传感器退化监测误差,表示为:
[0034][0035]
则第n个特征的传感器退化监测误差表示为:
[0036][0037]
优选的,所述步骤3中,在得到数据的传感器退化监测误差和环境监测误差后,设定干扰因子,将扰动引入到数据的监测误差中获得整体检测误差,整体监测误差表示为:
[0038][0039]
其中,表示第n个特征的传感器退化监测误差;表示第n个输入特征量的环境特征监测误差;k表示干扰因子;εn表示第n个特征的整体监测误差。
[0040]
优选的,所述步骤4中计算考虑监测误差的属性权重,并计算mbrb的新的激活权重;
[0041]
步骤41:计算考虑监测误差的属性权重的表示为:
[0042]
θi=ξiδi+(1-ξi)εiꢀꢀꢀꢀꢀꢀꢀ
(10)
[0043]
其中,θi为考虑监测误差的属性权重,其包含两部分,属性权重δi和整体监测误差εi;ξi为属性权重δi与整体监测误差εi之间的加权因子,并且0≤ξi≤1;
[0044]
步骤42:计算输入特征量的匹配度,表达式为:
[0045][0046]
其中,知分别表示两个相邻规则中的第i个输入特征量参考值;xi表示第i个输入特征量;l表示多特征置信规则库中置信规则的条数,规则的条数取值根据专家知识设定,l=1,2,
…
l,l表示置信规则数量;n表示健康状态等级;
[0047]
步骤43:根据输入特征量参考值和所述属性权重计算激活权重,第k条规则的激活权重表达式为:
[0048][0049]
其中,t表示第k条规则中包含的输入特征量的数量;表示第k条规则中第i个输入特征量的匹配度;θk表示第k条规则的规则权重;θi表示第i条规则的规则权重;ai表示第i个输入特征量的匹配度;l表示置信规则数。
[0050]
优选的,所述步骤5的具体实现过程为:
[0051]
根据专家知识设定初始mbrb预测模型的初始置信程度,对航空发动机气路进行健康状态预测,其中第k条规则如下所示:
[0052][0053]
其中,rk代表第k个置信度规则;x(t-m)表示第m个输入特征量,m∈(0,τ),τ表示延迟步骤数;d={d1d2,
…
,dn}表示第m个必备属性的参考值;表示第k条规则中第m个输入特征量的参考值,β
j,k
表示第j个结果的置信度dj,并且dj∈d,j=1,2,
…
,n,k=1,2,
…
,l;;l表示置信规则数量,由输入特征量个数及参考值个数决定的;n表示健康状态等级数,由专家知识确定;∧代表与关系;ε代表输入特征量的整体监测误差;θk表示第k条规则的规则权重;δ表示属性权重。
[0054]
优选的,步骤6中利用基于投影协方差矩阵的自适应演化策略优化算法(p-cma-es),对所述初始mbrb预测模型中的参数进行更新,以修正专家知识的不确定性,具体过程如下:
[0055]
步骤61:构造所述初始mbrb预测模型的目标函数表示为:
[0056][0057]
式中表示初始mbrb预测模型中的参数向量;δi表示第i个输入特征量的属性权重;θk表示第k条规则的规则权重;y表示真实健康状态,由专家知识给定;表示模型输出值;β
n,k
表示第k条规则下第n等级健康状态的初始置信度;
[0058]
步骤62:为了减小健康状态预测模型预测误差,构造如下的优化模型令上述的目标函数的进行约束,具体如下所示:
[0059][0060]
其中,m表示前提属性个数,即输入特征量的个数;通过优化模型更新初始mbrb预测模型中的参数向量,获得健康状态预测模型。
[0061]
经由上述的技术方案可知,与现有技术相比,本发明公开提供了一种考虑监测误差的航空发动机气路健康状态预测方法,能够提高考虑多个输入特征量和监视数据误差的航空发动机气路健康状态预测精度。解决由于外部环境干扰(噪声,振动等)以及传感器跟踪能力的下降,对监测数据产生影响造成预测误差的问题。考虑和细化监测数据的误差,提高对航空发动机气路健康状态的预测精度。
附图说明
[0062]
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据提供的附图获得其他的附图。
[0063]
图1附图为本发明提供的一种考虑监测误差的航空发动机气路健康状态预测方法流程图;
[0064]
图2附图为本发明提供的公开集数据图;
[0065]
图3附图为本发明提供的航空发动机气路健康状态预测结果均方误差图。
具体实施方式
[0066]
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
[0067]
本发明实施例公开了一种考虑监测误差的航空发动机气路健康状态预测方法,具体流程如图1所示。
[0068]
s1:采集航空发动机的监测数据作为输入特征量,通过对航空发动机气路特征量的环境特征监测误差进行分析,计算环境特征监测误差;
[0069]
s2:根据作为输入特征量,通过对航空发动机气路特征量的传感器退化监测误差进行分析,计算传感器退化监测误差;
[0070]
s3:设定干扰因子,根据环境特征监测误差和传感器退化监测误差计算航空发动机气路特征量的整体监测误差;
[0071]
s4:根据整体监测误差计算考虑监测误差的属性权重,并根据多特征置信规则库中两个相邻规则中的输入特征量参考值计算输入特征量的匹配度,根据属性权重和输入特征量参考值计算激活权重;
[0072]
s5:根据激活权重建立初始mbrb预测模型;
[0073]
s6:基于p-cma-es优化算法,对初始mbrb模型中的初始参数进行更新获得健康状态预测模型;
[0074]
s7:根据健康状态预测模型,通过航天发动机气路监测数据预测出航空发动机气路的健康状态。
[0075]
实施例1
[0076]
在一个具体实施例中,s1中采用平均距离方法根据监测数据计算环境特征监测误差,具体过程如下:
[0077]
s11:设定采集的监测数据作为构建预测模型的输入特征量,初始mbrb预测模型的第n个输入特征量的输入数据为xn(1),xn(2),...,xn(i),则每个数据与其他数据之间的距离为:
[0078]dn
(xn(i),xn(i
′
))=|xn(i)-xn(i
′
)|
ꢀꢀꢀ
(1)
[0079]
其中,xn(i)表示第n个输入特征量中的第i个数据,i,i
′
∈{1,...,i};
[0080]
s12:环境特征引起的数据波动的幅度用平均距离来反映,根据每个数据与其他数据之间的距离计算第n个输入特征量中的第i个数据与其他数据之间的平均距离,表达式为:
[0081][0082]
s13:根据平均距离与最大距离计算所述环境监测误差;
[0083]
数据的环境特征监测误差用平均距离与数据最大距离的比值来反映,则第n个输入特征量中的第i个数据的环境特征监测误差表示为:
[0084][0085]
则第n个输入特征量的环境特征监测误差为:
[0086][0087]
实施例2
[0088]
在一个具体实施例中,s2中采用平均方差方法根据所述监测数据计算传感器退化监测误差,具体过程如下:
[0089]
s21:计算所有监测数据的平均值:
[0090][0091]
xn(i)表示第n个输入特征量中的第i个数据,i,i
′
∈{1,...,i};
[0092]
s22:传感器退化引起的数据波动的幅度用平均方差来反映,根据所有监测数据的平均值计算第n个输入特征量中的第i个数据与其他数据之间的平均方差:
[0093]
[0094]
s23:数据的环境特征监测误差用平均方差与最大方差的比值来反映,则根据平均方差和最大方差计算第n个输入特征量中的第i个数据的传感器退化监测误差,表示为:
[0095][0096]
则第n个特征的传感器退化监测误差表示为:
[0097][0098]
实施例3
[0099]
在一个具体实施例中,s3中在得到数据的传感器退化监测误差和环境监测误差后,设定干扰因子,将扰动引入到数据的监测误差中获得整体检测误差,整体监测误差表示为:
[0100][0101]
表示第n个特征的传感器退化监测误差,表示第n个输入特征量的环境特征监测误差;k表示干扰因子;εn表示第n个特征的整体监测误差。
[0102]
在本实施例中,s4的具体过程为:
[0103]
s41:计算考虑监测误差的属性权重的表示为:
[0104]
θi=ξiδi+(1-ξi)εiꢀꢀꢀꢀꢀ
(10)
[0105]
其中,θi为考虑监测误差的属性权重,其包含两部分,属性权重δi和整体监测误差εi;ξi为属性权重δi与整体监测误差εi之间的加权因子,并且0≤ξi≤1;
[0106]
s42:计算输入特征量的匹配度,,表达式为:
[0107][0108]
其中,和分别表示两个相邻规则中的第i个输入特征量参考值;xi表示第i个输入特征量;l表示多特征置信规则库中置信规则的条数,规则的条数取值根据专家知识设定,l=1,2,
…
l,l表示置信规则数量;
[0109]
s43:根据输入特征量参考值和所述属性权重计算激活权重,第k条规则的激活权重表达式为:
[0110][0111]
其中,t表示第k条规则中包含的输入特征量的数量;表示第i个输入特征量的匹配度;θk表示第k条规则的规则权重;θi表示第i条规则的规则权重;ai表示第i个输入特征量的匹配度;l表示置信规则数。
[0112]
实施例4
[0113]
在一个具体实施例中,s5的具体实现过程为:
[0114]
根据专家知识设定初始mbrb预测模型的初始置信程度,对航空发动机气路的健康
状态特征量进行健康状态预测,其中第k条规则如下所示:
[0115][0116]
其中,rk代表第k个置信度规则;x(t-m)表示第m个输入特征量,m∈(0,τ),τ表示延迟步骤数;d={d1d2,
…
,dn}表示第m个必备属性的参考值;表示第k条规则中第m个输入特征量的参考值,规则中第m个输入特征量的参考值,l表示置信规则数量,由输入特征量个数及参考值个数决定的;β
j,k
表示第j个结果的置信度dj,并且dj∈d,j=1,2,
…
,n,k=1,2,
…
,l;∧代表与关系;n表示健康状态等级数,由专家知识确定;ε代表输入特征量的整体监测误差;θk表示第k条规则的规则权重;δ表示属性权重。
[0117]
实施例5
[0118]
在一个具体实施例中,s6具体过程如下:
[0119]
s61:构造所述初始mbrb预测模型的目标函数表示为:
[0120][0121]
式中表示初始mbrb预测模型中的参数向量;g表示输入特征量的个数;δi表示第i个输入特征量的属性权重;θk表示第k条规则的规则权重;y表示真实健康状态,由专家知识给定;表示模型输出值;β
n,k
表示第k条规则下第n等级健康状态的初始置信度;
[0122]
s62:为了使得和yn尽可能的接近,减小健康状态预测模型预测误差,构造如下的优化模型令上述的目标函数的进行约束,具体如下所示:
[0123][0124]
其中,m表示前提属性个数,即输入特征量的个数;通过优化模型更新初始mbrb预测模型中的参数向量,获得最终mbrb预测模型。
[0125]
为了验证本发明方法的整体效果,采用公开集数据中的部分数据对算法进行验证,部分数据如图2所示。为了更直观的表述算法的优越性,用均方误差结果图表示,如图3所示。在图3中,在航空发动机运行前期,由于数据过少,导致传感器退化引起的监测误差较
小,因此,预测结果显示在前期误差较大。在其余健康状态,则有效提高了预测精度。
[0126]
本说明书中各个实施例采用递进的方式描述,每个实施例重点说明的都是与其他实施例的不同之处,各个实施例之间相同相似部分互相参见即可。对于实施例公开的装置而言,由于其与实施例公开的方法相对应,所以描述的比较简单,相关之处参见方法部分说明即可。
[0127]
对所公开的实施例的上述说明,使本领域专业技术人员能够实现或使用本发明。对这些实施例的多种修改对本领域的专业技术人员来说将是显而易见的,本文中所定义的一般原理可以在不脱离本发明的精神或范围的情况下,在其它实施例中实现。因此,本发明将不会被限制于本文所示的这些实施例,而是要符合与本文所公开的原理和新颖特点相一致的最宽的范围。
技术特征:
1.一种考虑监测误差的航空发动机气路健康状态预测方法,其特征在于,包括以下具体步骤:步骤1:采集航空发动机的监测数据作为输入特征量,计算环境特征监测误差;步骤2:根据所述输入特征量,计算传感器退化监测误差;步骤3:设定干扰因子,根据所述环境特征监测误差和所述传感器退化监测误差计算整体监测误差;步骤4:根据所述整体监测误差计算基于多特征置信规则库中考虑监测误差的属性权重,并根据多特征置信规则库中两个相邻规则中的输入特征量参考值计算输入特征量的匹配度,根据所述属性权重和所述输入特征量参考值计算激活权重;步骤5:根据专家知识设定初始置信度,并结合所述激活权重建立初始mbrb预测模型;步骤6:采用基于投影协方差矩阵的自适应演化策略优化算法,对所述初始mbrb预测模型中的参数向量进行更新,获得健康状态预测模型;步骤7:采集待预测的航空发动机的监测数据并输入所述健康状态预测模型,获得预测结果。2.根据权利要求1所述的一种考虑监测误差的航空发动机气路健康状态预测方法,其特征在于,所述步骤1中采用平均距离方法根据所述监测数据计算环境特征监测误差,具体过程如下:步骤11:计算输入特征量的每个数据与其他数据之间的距离;步骤12:根据每个数据与其他数据之间的距离计算第n个输入特征量中的数据与其他数据之间的平均距离;步骤13:根据平均距离与最大距离计算所述环境特征监测误差。3.根据权利要求1所述的一种考虑监测误差的航空发动机气路健康状态预测方法,其特征在于,所述步骤2中采用平均方差方法根据所述监测数据计算传感器退化监测误差,具体过程如下:步骤21:计算所有输入特征量的平均值;步骤22:根据所有输入特征量的平均值计算输入特征量中的数据与其他数据之间的平均方差;步骤23:根据平均方差和最大方差计算传感器退化监测误差。4.根据权利要求1所述的一种考虑监测误差的航空发动机气路健康状态预测方法,其特征在于,所述步骤3中,在得到数据的传感器退化监测误差和环境监测误差后,设定干扰因子,将扰动引入到数据的监测误差中获得整体检测误差,整体监测误差表示为:其中,表示第n个特征的传感器退化监测误差;表示第n个输入特征量的环境特征监测误差;k表示干扰因子;ε
n
表示第n个特征的整体监测误差。5.根据权利要求1所述的一种考虑监测误差的航空发动机气路健康状态预测方法,其特征在于,所述步骤4中具体实现过程为:步骤41:计算考虑监测误差的属性权重的表示为:
其中,为考虑监测误差的属性权重,其包含两部分,属性权重δ
i
和整体监测误差ε
i
;ξ
i
为属性权重δ
i
与整体监测误差ε
i
之间的加权因子,并且0≤ξ
i
≤1;步骤42:计算输入特征量的匹配度,表达式为:其中,和分别表示两个相邻规则中的第i个输入特征量参考值;x
i
表示第i个输入特征量;l表示多特征置信规则库中置信规则的条数;步骤43:根据输入特征量参考值和所述属性权重计算激活权重,第k条规则的激活权重表达式为:其中,t表示第k条规则中包含的输入特征量的数量;表示第i个输入特征量的匹配度;θ
k
表示第k条规则的规则权重;θ
i
表示第i条规则的规则权重;a
i
表示第i个输入特征量的匹配度;l表示置信规则数量。6.根据权利要求5所述的一种考虑监测误差的航空发动机气路健康状态预测方法,其特征在于,所述步骤5的具体实现过程为:根据专家知识设定初始mbrb预测模型的初始置信度,对航空发动机气路进行健康状态预测,其中第k条规则如下所示:r
k
ε:then x(t+1)is{(d1,β
1,k
),
…
,(d
n
,β
n,k
)}with a rule weight θ
k
,attribute weight δ1,δ2,
…
,δ
n
andmonitoring error ε1,ε2,
…
,ε
t-τ+1
其中,r
k
代表第k个置信度规则;x(t-m)表示第m个输入特征量,m∈(0,τ),τ表示延迟步骤数;d={d1d2,
…
,d
n
}表示第m个必备属性的参考值;表示第k条规则中第m个输入特征量的参考值,β
j,k
表示第j个结果的置信度d
j
,并且d
j
∈d,j=1,2,
…
,n,k=1,2,
…
,l;l表示置信规则数量;n表示健康状态等级数;∧代表与关系;ε代表输入特征量的整体监测误差;θ
k
表示第k条规则的规则权重;δ表示属性权重。7.根据权利要求1所述的一种考虑监测误差的航空发动机气路健康状态预测方法,其特征在于,利用基于投影协方差矩阵的自适应演化策略优化算法,对所述初始mbrb预测模型中的参数进行更新,以修正专家知识的不确定性,具体过程如下:
步骤61:构造所述初始mbrb预测模型的目标函数表示为:式中表示初始mbrb预测模型中的参数向量;g表示输入特征量的个数;δ
i
表示第i个输入特征量的属性权重;θ
k
表示第k条规则的规则权重;y表示真实健康状态;表示模型输出值;β
n,k
表示第k条规则下第n等级健康状态的初始置信度;步骤62:构造优化模型对所述目标函数进行约束,所述优化模型为:minmse(v)0≤β
n,k
≤1,n=1,2,
…
,n,k=1,2,
…
,l0≤δ
i
≤1,i=1,2,
…
,m0≤θ
k
≤1其中,m表示输入特征量的个数;通过所述优化模型更新初始mbrb预测模型中的参数向量,获得健康状态预测模型。
技术总结
本发明公开了一种考虑监测误差的航空发动机气路健康状态预测方法,包括以下步骤:1、分析监测数据出现监测误差的原因,并计算由环境干扰引起的环境特征监测误差和由传感器退化引起的传感器退化监测误差;2、综合计算监测误差;3、计算考虑监测误差的属性权重,并计算多特征置信规则库的新激活权重;4、根据专家知识和新的激活权重建立初始MBRB预测模型;5、将投影协方差矩阵的自适应演化策略作为优化算法对初始参数进行更新,得到航空发动机气路的健康状态预测模型。本发明通过建立考虑了监测数据的综合监测误差的健康状态预测模型,可以提高航空发动机气路健康状态预测的精度。提高航空发动机气路健康状态预测的精度。提高航空发动机气路健康状态预测的精度。
技术研发人员:尹晓静 彭寿鑫 张邦成 张宇 贺强强 于喆 张森
受保护的技术使用者:长春工业大学
技术研发日:2022.02.11
技术公布日:2022/5/25
转载请注明原文地址:https://tc.8miu.com/read-17475.html