1.本发明涉及一种巷道抗震安全系数计算方法及安全预测方法。
背景技术:
2.矿震是煤矿在地下开采过程中围岩出现快速的错动、破裂等现象,是煤岩体对区域或局部应力调整的一种响应,同时会伴随着能量的产生。在煤矿开采过程中,会伴随着矿震的发生,并可能产生冲击地压(一种致灾型的矿震),这对巷道的安全有着巨大的威胁,所以确定巷道的抗震能力是工作面设计、停采线设计、支护设计、推进速度安排等必不可少的工作。
3.然而,现有的抗震能力计算方法中,基本都只是简单的将锚杆和锚索的抗震能量相加,虽然可以在一定程度上通过锚固水平反映出巷道的抗震能力,但是并没有将巷道所处的周围环境对矿震能量的影响进行分析,不仅计算结果误差大,而且严重影响后续的工作面设计、停采线设计、支护设计、推进速度安排等事宜。
技术实现要素:
4.针对上述问题,本发明提供一种巷道抗震安全系数计算方法及安全预测方法,基于微震监测参数和矿震能量在岩体中的传播和衰减规律计算巷道抗震安全系数及安全预测,具有非常高的实用价值和现实意义。
5.为实现上述技术目的,达到上述技术效果,本发明通过以下技术方案实现:
6.一种巷道抗震安全系数计算方法,包括如下步骤:
7.步骤1、通过井下所有爆破微震数据确定巷道可抵抗的最小矿震能量e
min
;
8.步骤2、根据震动波在岩体中的传播衰减规律计算预计可发生最大矿震能量e
max
从任一位置传播至巷道的剩余能量em;
9.步骤3、根据巷道可抵抗最小矿震能量e
min
和em计算得到巷道的抗震安全系数β:
10.β=e
min
/em11.优选,步骤1中,统计井下监测区域内所有爆破微震数据ei,获得最大矿震能量值max{ei},并依据最不利安全原则,将其设定为巷道可抵抗的最小矿震能量e
min
。
12.优选,步骤2中:
13.步骤201、选取监测区域微震事件,根据质点峰值速度在岩体中的传播衰减规律,拟合计算出震动波在岩体中的传播吸收系数
14.步骤202、根据传播吸收系数计算震动波能量在岩体中的传播衰减规律。
15.优选,步骤201中,传播吸收系数采用如下公式进行最小二乘拟合计算获取:
[0016][0017]
式中,c为比例常数,为传播吸收系数,ri为震源至传感器i的距离,ai为传感器i
记录的质点峰值速度,e为自然常数。
[0018]
优选,步骤202中,震动波能量在岩体中的传播衰减公式为:
[0019][0020]
式中,r0表示震源破裂半径,r表示震源距巷道的距离,e0为震源震动能量,er为震源传播至巷道的剩余能量,e为自然常数。
[0021]
优选,预计可发生最大矿震能量e
max
采用如下公式进行计算:
[0022]emax
=10
a/b
[0023]
式中,a、b为古登堡公式中的统计常数,并满足:
[0024]
lgn(≥lge)=a-blge
[0025]
式中,e为微震能量;n≥lge且n为能量大于等于e的微震次数;a表征微震活动水平,b表征不同大小微震数目的比例关系。
[0026]
优选,预计可发生最大矿震能量e
max
从任一位置传播至巷道的剩余能量em采用如下公式计算:
[0027][0028]
式中,r0表示震源破裂半径,r表示震源距巷道的距离,e为自然常数,为传播吸收系数。
[0029]
优选,震源破裂半径r0采用如下公式进行计算:
[0030][0031]
式中,k为系数;vs为横波速度,fc为拐角频率。
[0032]
优选,拐角频率fc采用如下公式计算:
[0033][0034]
式中,d(f)为震动波形位移谱;v(f)为震动波形速度谱。
[0035]
一种巷道抗震安全预测方法,采用上述任意一项所述的巷道抗震安全系数计算方法计算巷道的抗震安全系数β,将β小于1时对应的距离r值预测为巷道受矿震威胁的区域范围。
[0036]
本发明的有益效果是:
[0037]
本发明基于微震监测参数的巷道抗震安全系数计算方法,首先通过井下所有爆破微震数据确定巷道可抵抗的最小矿震能量e
min
;然后根据震动波在岩体中的衰减规律和巷道可抵抗最小矿震能量,计算得到巷道的抗震安全系数β;后续可以依据抗震安全系数预测巷道受矿震威胁的区域范围。其中,涉及的巷道抗震安全系数计算公式物理意义明确、公式涉及的参量计算清楚,计算过程所涉及的爆破微震数据的获取比较简单,投入的成本很低,而且普适性强。
[0038]
另外,本发明涉及的巷道可抵抗的最小矿震能量时效性强,可以随着监测所得的微震数据实时更新。本发明对震动波在岩层中的传播和衰减规律进行了深入研究,有很好的可操作性和可靠性,可以对巷道的威胁区域进行预测,有效地降低安全事故发生的概率,
具有非常重要的实用价值和现实意义。
附图说明
[0039]
图1是本发明实施例的爆破微震事件空间分布图;
[0040]
图2是本发明实施例基于微震监测的巷道抗震安全系数计算方法的吸收系数拟合图;
[0041]
图3是本发明实施例基于微震监测的巷道抗震安全系数计算方法的a、b拟合图;
[0042]
图4是本发明实施例巷道抗震安全系数沿巷道距离分布图。
具体实施方式
[0043]
下面结合附图和具体的实施例对本发明技术方案作进一步的详细描述,以使本领域的技术人员可以更好的理解本发明并能予以实施,但所举实施例不作为对本发明的限定。
[0044]
一种巷道抗震安全系数计算方法,包括如下步骤:
[0045]
步骤1、通过井下所有爆破微震数据确定巷道可抵抗的最小矿震能量e
min
,优选的:
[0046]
统计井下监测区域内所有爆破微震数据ei,获得最大矿震能量值max{ei},并依据最不利安全原则,将其设定为巷道可抵抗的最小矿震能量e
min
。其中,微震是指由岩石破裂或流体扰动产生微小的震动,震级一般在-2—2之间。
[0047]
步骤2、根据震动波在岩体中的传播衰减规律计算预计可发生最大矿震能量e
max
从任一位置传播至巷道的剩余能量em,优选的:
[0048]
首先,选取监测区域微震事件,根据质点峰值速度在岩体中的传播衰减规律,拟合计算出震动波在岩体中的传播吸收系数比如,传播吸收系数可以采用如下公式进行最小二乘拟合计算获取:
[0049][0050]
式中,c为比例常数,为传播吸收系数,ri为震源至传感器i的距离,ai为传感器i记录的质点峰值速度,e为自然常数。
[0051]
其次,根据传播吸收系数计算震动波能量在岩体中的传播衰减规律,其中,震动波能量在岩体中的传播衰减公式为:
[0052][0053]
式中,r0表示震源破裂半径,r表示震源距巷道的距离,e0为震源震动能量,er为震源传播至巷道的剩余能量,e为自然常数。
[0054]
其中,优选,震源破裂半径r0采用如下公式进行计算:
[0055][0056]
式中,k为系数,可以取0.21;vs为横波速度,一般取2300m/s,fc为拐角频率。
[0057]
优选,拐角频率fc采用如下公式计算:
[0058][0059]
式中,d(f)为震动波形位移谱;v(f)为震动波形速度谱。
[0060]
然后,根据震动波能量在岩体中的传播衰减公式,计算预计可发生最大矿震能量e
max
从任一位置传播至巷道的剩余能量em,比如,采用下式进行计算:
[0061][0062]
式中,r0表示震源破裂半径,r表示震源距巷道的距离,e为自然常数,为传播吸收系数。
[0063]
其中,预计可发生最大矿震能量e
max
可以采用如下公式进行计算:
[0064]emax
=10
a/b
[0065]
式中,a、b为古登堡公式中的统计常数,并满足:
[0066]
lgn(≥lge)=a-blge
[0067]
式中,e为微震能量;n≥lge且n为能量大于等于e的微震次数;a、b为常数,其统计学意义为:a表征微震活动水平,b表征不同大小微震数目的比例关系。
[0068]
步骤3、根据巷道可抵抗最小矿震能量e
min
和em计算得到巷道的抗震安全系数β:
[0069]
β=e
min
/em[0070]
一种巷道抗震安全预测方法,采用上述任意一项所述的巷道抗震安全系数计算方法计算巷道的抗震安全系数β,将β小于1时对应的距离r值预测为巷道受矿震威胁的区域范围,也即计算获得巷道抗震安全系数及其沿巷道距离的分布,进而采用巷道抗震安全系数小于1预测巷道受矿震威胁的区域范围。
[0071]
本发明涉及的一种基于微震监测参数的巷道抗震安全系数计算方法及巷道抗震安全预测方法,可以适用于矿山安全微震监测领域使用,下面结合实例分析选取某煤矿井下一段时间内所有的微震数据进行分析,巷道抗震安全系数小于1时对应的距离r值确定受威胁区域。按照本发明思想实施本发明:
[0072]
(1)根据某矿爆破微震能量统计分布如图1所示,微震能量分布范围为99.77—9231.81j,得到巷道可抵抗的最小矿震能量为9231.81j;
[0073]
(2)统计该矿的微震事件,如图2所示,通过拟合得到震动波在岩体中的传播吸收系数为0.000363;
[0074]
(3)通过微震事件拟合得到的a、b分别为6.1900和1.0031,如图3所示,依此计算得到最大矿震能量为1.48e 06j,进而求得最大矿震能量从任一位置传播至巷道的剩余能量;
[0075]
(4)通过分析历史强矿震事件波形,计算出该矿井震源破裂半径为33m—106m;
[0076]
(5)根据剩余能量和巷道可抵抗的最小矿震能量,可计算得到巷道抗震安全系数沿巷道距离的分布如图4所示,得到矿震威胁区域范围为巷道周边400m(破裂半径33m)至巷道周边1000m(破裂半径106m)。
[0077]
实例表明,本发明涉及的参量计算过程清晰明确,结果也很清楚,具有很好的普适性,操作简便,成本投入非常低,可以对巷道的威胁区域进行加强监测与采取针对性防治措施,可有效地降低事故发生的概率。
[0078]
以上仅为本发明的优选实施例,并非因此限制本发明的专利范围,凡是利用本发明说明书及附图内容所作的等效结构或者等效流程变换,或者直接或间接运用在其他相关的技术领域,均同理包括在本发明的专利保护范围内。
转载请注明原文地址:https://tc.8miu.com/read-2759.html