一种太阳能电池用陶瓷靶材及其制备方法

    专利查询2022-07-08  135

    一种太阳能电池用陶瓷靶材及其制备方法
    1.技术领域
    2.本发明涉及太阳能电池技术领域,具体涉及一种太阳能电池用的陶瓷靶材及其制备方法。


    背景技术:

    3.氧化铟锡(ito)薄膜是一种应用最广泛的透明导电材料,其具有较高的红外反射率和可见光透光性、极低的电阻率、良好的蚀刻性和化学稳定性等优点。ito薄膜的常用组分为氧化铟/氧化锡=90/10,该薄膜材料目前主要应用于平板显示领域的薄膜晶体管(tft)和彩色滤光片(cf),以及触摸屏(tp)等光电器件。
    4.在太阳能电池光伏领域,为提高太阳能电池的光电转换效率,需要利用好红外波段的太阳光能量,则需要在红外波段具有较高透光率的透明导电氧化物(tco)薄膜。降低tco薄膜红外波段的反射率(即提高红外波段透光率)需要降低薄膜的电子浓度,但为了保证优良的导电性,则需要通过提高薄膜的电子迁移率来降低电阻率(方块电阻)。
    5.90/10组分的ito靶材由于氧化锡含量较高,不仅会产生in4sn3o
    12
    相,而且载流子浓度较高,导致电子迁移率比较低(在20cm2/v
    ·
    s以内),因此需要减少氧化锡含量。当氧化锡含量低时(如3%、5%),载流子浓度会略有减少,电子迁移率略有增大。但是,氧化锡含量低时,靶材的烧结难度显著增加,其相对密度较难达到98%以上。例如烧结97/3比例的ito靶材时,烧结温度会提高到1600℃以上,还需要延长保温时间来促使致密化,如此,容易导致靶材烧结过程中开裂,以及晶粒粗大引起靶材力学性能变差。而且,低氧化锡含量的ito薄膜,电子迁移率还不够高,薄膜的导电性会略有降低,不利于降低太阳能电池的串联电阻。另外,相同配方的tco材料,通常磁控溅射工艺制备的薄膜电子迁移率要低于活化等离子体沉积工艺(reactive plasma deposition,rpd)制备的薄膜。同时,难以烧制高密度的磁控溅射陶瓷靶材,使得靶材在磁控溅射镀膜过程中极易发生表面节瘤中毒现象,进而影响薄膜的质量和连续生产。


    技术实现要素:

    6.针对现有技术的不足,本发明提供了一种太阳能电池用的陶瓷靶材及其制备方法。本发明利用独特的靶材组成和烧结工艺,获得一种高电子迁移率、高红外透光率的陶瓷靶材,可提高太阳能电池的转化效率,且适合规模生产。
    7.本发明提供的太阳能电池用陶瓷靶材,其组份为98.5-99.5wt%的氧化铟以及0.5-1.5wt%的掺杂氧化物;所述掺杂氧化物为氧化钨(wo3)、氧化镓(ga2o3)、氧化铈(ceo2)、氧化钛(tio2)、氧化钼(moo3)、氧化钇(y2o3)、氧化锆(zro2)、氧化锗(geo2)中的3-5种。
    8.本发明提供的太阳能电池用陶瓷靶材,其制备方法包括以下步骤:(1)按照靶材组分的重量比精确称取相应的氧化物粉体原料,以及制浆中所用的
    去离子水、分散剂和粘接剂。
    9.(2)将上述所称量的粉体与去离子水进行混合后,加入粉体总重量0.5-3%的分散剂,用高速分散机分散后再在纳米研磨机中研磨,然后添加粉体总重量1.0-4.0%的粘结剂,得到粒度均匀、粘度适中的浆料。
    10.(3)将上述所制备的浆料用离心雾化进行造粒,获得成型用造粒粉体。
    11.(4)将上述所制备的造粒粉体先模压成型,其压力为10-80mpa,再冷等静压强化,其压力为180-300mpa。
    12.(5)将素坯放置于烧结炉中进行烧结,获得致密化的太阳能电池用且可规模化生产的陶瓷靶材。
    13.(6)素坯烧结环境优选采用混合气氛,所述混合气氛由氧气与空气的混合气体构成,其中氧气占比30-70wt%;烧结时,升温到700℃后开始通入混合气体,直至降温到1300℃。
    14.本发明的烧结工艺特点在于全段不存在保温的温度制度,从室温到最高温1560℃,共设置6个升温过程。其温度区间和升温速度分别为:室温-160℃(1.2℃/min)、160-300℃(0.7℃/min)、300-700℃(0.5℃/min)、700-1150℃(1℃/min)、1150-1300℃(0.5℃/min)、1300-1560℃(0.05-0.08℃/min)。到达最高温后随即降温,在1500-1300℃区间的降温速率为0.5℃/min,1300-1000℃区间的降温速率为1℃/min,然后关闭热源自然降温。
    15.本发明的技术特点和有益效果:1.本发明提供的靶材具有高密度特征,其相对密度在98%以上。主晶相为氧化铟相,因添加物含量较低,没有形成杂相,原子完全固溶于氧化铟晶格中。磁控溅射沉积的薄膜具有较高的电子迁移率,比常规的氧化铟锡(ito)靶材高出2-4倍,可显著提高太阳能电池的光电转化效率。同时,通过兼具有助烧功能的组分降低了靶材的烧结温度,减少了靶材的开裂风险。
    16.2.本发明采用的新烧结工艺,对靶材的致密性、内部组织均匀性均有良好的改善,在控制晶粒长大、消除晶界间的闭气孔上均有良好表现,助于提高其成品率和生产效率。同时,采用空气与氧气的混合气氛进行烧结,可以降低靶材的制造成本。
    具体实施方式
    17.下面给出具体的实施例,用以详细说明本发明的技术方案和有益效果。
    18.实施例1:称取氧化铟粉9.9kg,氧化钨粉0.025kg,氧化铈粉0.025kg,氧化钛粉0.05kg,与超纯水按照60%的固含量进行均匀混合,外加0.5%的分散剂。在高速分散机中分散24h,然后浆料转入纳米砂磨机中研磨4h,研磨腔为聚氨酯材质,研磨介质为氧化锆球。浆料加入1.0%的粘接剂和0.05%的消泡剂,然后200目过筛浆料,进行脱泡和除杂处理,得到粒度适中、粘度优良的浆料。浆料喷雾造粒的进风温度为180℃,出风温度为100℃,进料频率为11,得到造粒粉体。将造粒粉体放置于300
    ×
    300mm的模具中成型,压力为80mpa,得到的素坯经防水包装后进行冷等静压处理,压力为180mpa。最后,将素坯放置于氧气含量为50%的混合气氛中进行烧结,烧结温度从室温到最高温1560℃共设置六个升温过程:室温-160℃(1.2℃/min)、160-300℃(0.7℃/min)、300-700℃(0.5℃/min)、700-1150℃(1℃/min)、1150-1300
    ℃(0.5℃/min)、1300-1560℃(0.05℃/min),到达1560℃后随即降温,在1500-1300℃、1300-1000℃区间的降温速率分别为0.5℃/min和1℃/min,1000℃后停电自然降温。经阿基米德排水法测试,靶材的相对密度为99.1%。
    19.将得到的平面靶材进行机加工和绑定制成直径为6英寸的溅射靶材,在直流磁控溅射系统中进行镀膜,基材为0.7mm厚的康宁玻璃,溅射气体为氩气,工作气体为氧气(不引入水蒸气或氢气),在优化的工艺条件下制备的薄膜的电子迁移率为48.35cm2/v
    ·
    s。
    20.实施例2:称取氧化铟粉9.85kg,氧化钇粉0.05kg,氧化铈粉0.05kg,氧化锆粉0.05kg,与超纯水按照60%的固含量进行均匀混合,外加0.5%的分散剂。在高速分散机中分散24h,然后浆料转入纳米砂磨机中研磨4h,研磨腔为聚氨酯材质,研磨介质为氧化锆球。浆料加入1.0%的粘接剂和0.05%的消泡剂,然后200目过筛浆料,进行脱泡和除杂处理,得到粒度适中、粘度优良的浆料。浆料喷雾造粒的进风温度为180℃,出风温度为100℃,进料频率为11,得到造粒粉体。将造粒粉体放置于300
    ×
    300mm的模具中成型,压力为15mpa,得到的素坯经防水包装后进行冷等静压处理,压力为300mpa。最后,将素坯放置于氧气含量为30%的混合气氛中进行烧结,烧结温度从室温到最高温1560℃共设置六个升温过程:室温-160℃(1.2℃/min)、160-300℃(0.7℃/min)、300-700℃(0.5℃/min)、700-1150℃(1℃/min)、1150-1300℃(0.5℃/min)、1300-1560℃(0.08℃/min)。到达1560℃后随即降温,在1500-1300℃、1300-1000℃区间的降温速率分别为0.5℃/min和1℃/min,1000℃后停电自然降温。最终,得到相对密度在98.6%的氧化物陶瓷靶材。
    21.将得到的平面靶材进行机加工和绑定制成直径为6英寸的溅射靶材,在直流磁控溅射系统中进行镀膜,基材为0.7mm厚的康宁玻璃,溅射气体为氩气,工作气体为氧气(不引入水蒸气或氢气),在优化的工艺条件下制备的薄膜的电子迁移率为43.81cm2/v
    ·
    s。
    22.实施例3:称取氧化铟粉9.95kg,氧化镓粉0.01kg,氧化钨粉0.01kg,氧化铈粉0.02kg,氧化锆粉0.01kg,与超纯水按照55%的固含量进行均匀混合,外加0.5%的分散剂。在高速分散机中分散24h,然后浆料转入纳米砂磨机中研磨4h,研磨腔为聚氨酯材质,研磨介质为氧化锆球。浆料加入1.0%的粘接剂和0.05%的消泡剂,然后200目过筛浆料,进行脱泡和除杂处理,得到粒度适中、粘度优良的浆料。浆料喷雾造粒的进风温度为180℃,出风温度为100℃,进料频率为11,得到造粒粉体。将造粒粉体放置于300
    ×
    300mm的模具中成型,压力为60mpa,得到的素坯经防水包装后进行冷等静压处理,压力为280mpa。最后,将素坯放置于氧气含量为70%的混合气氛中进行烧结,烧结温度从室温到最高温1560℃共设置六个升温过程:室温-160℃(1.2℃/min)、160-300℃(0.7℃/min)、300-700℃(0.5℃/min)、700-1150℃(1℃/min)、1150-1300℃(0.5℃/min)、1300-1560℃(0.075℃/min)。到达1560℃后随即降温,在1500-1300℃、1300-1000℃区间的降温速率分别为0.5℃/min和1℃/min,1000℃后停电自然降温。最终,得到相对密度在98.8%的氧化物陶瓷靶材。
    23.将得到的平面靶材进行机加工和绑定制成直径为6英寸的溅射靶材,在直流磁控溅射系统中进行镀膜,基材为0.7mm厚的康宁玻璃,溅射气体为氩气,工作气体为氧气(不引入水蒸气或氢气),在优化的工艺条件下制备的薄膜的电子迁移率为63.64cm2/v
    ·
    s。
    24.实施例4:
    称取氧化铟粉9.9kg,氧化镓粉0.02kg,氧化钼粉0.02kg,氧化铈粉0.02kg,氧化锗粉0.02kg,氧化钛粉0.02kg。靶材制备的工艺过程与实施例3相同。最终,得到相对密度在99%的氧化物陶瓷靶材。
    25.将得到的平面靶材进行机加工和绑定制成直径为6英寸的溅射靶材,在直流磁控溅射系统中进行镀膜,基材为0.7mm厚的康宁玻璃,溅射气体为氩气,工作气体为氧气(不引入水蒸气或氢气),在优化的工艺条件下制备的薄膜的电子迁移率为64.55cm2/v
    ·
    s。
    26.实施例5:称取氧化铟粉9.95kg,氧化钇粉0.01kg,氧化钼粉0.01kg,氧化铈粉0.01kg,氧化锗粉0.01kg,氧化钛粉0.01kg。靶材制备的工艺过程与实施例3相同。最终,得到相对密度在98.9%的氧化物陶瓷靶材。
    27.将得到的平面靶材进行机加工和绑定制成直径为6英寸的溅射靶材,在直流磁控溅射系统中进行镀膜,基材为0.7mm厚的康宁玻璃,溅射气体为氩气,工作气体为氧气(不引入水蒸气或氢气),在优化的工艺条件下制备的薄膜的电子迁移率为66.32cm2/v
    ·
    s。
    28.实施例6:称取氧化铟粉9.85kg,氧化铈粉0.05kg,氧化锗粉0.05kg,氧化钛粉0.05kg。靶材制备的工艺过程与实施例3相同。最终,得到相对密度在99.2%的氧化物陶瓷靶材。
    29.将得到的平面靶材进行机加工和绑定制成直径为6英寸的溅射靶材,在直流磁控溅射系统中进行镀膜,基材为0.7mm厚的康宁玻璃,溅射气体为氩气,工作气体为氧气(不引入水蒸气或氢气),在优化的工艺条件下制备的薄膜的电子迁移率为56.78cm2/v
    ·
    s。
    30.实施例7:称取氧化铟粉9.9kg,氧化钇粉0.02kg,氧化锗粉0.01kg,氧化锆粉0.05kg,氧化钛粉0.02kg。靶材制备的工艺过程与实施例3相同。最终,得到相对密度在99%的氧化物陶瓷靶材。
    31.将得到的平面靶材进行机加工和绑定制成直径为6英寸的溅射靶材,在直流磁控溅射系统中进行镀膜,基材为0.7mm厚的康宁玻璃,溅射气体为氩气,工作气体为氧气(不引入水蒸气或氢气),在优化的工艺条件下制备的薄膜的电子迁移率为60.48cm2/v
    ·
    s。
    32.对比例1:外购成分比为90/10的ito靶材,直径为6英寸。在直流磁控溅射系统中进行镀膜,基材为0.7mm厚的康宁玻璃,溅射气体为氩气,工作气体为氧气(不引入水蒸气或氢气),在优化的工艺条件下制备的薄膜的电子迁移率为14.78cm2/v
    ·
    s。
    33.对比例2:外购成分比为97/3的ito靶材,直径为6英寸。在直流磁控溅射系统中进行镀膜,基材为0.7mm厚的康宁玻璃,溅射气体为氩气,工作气体为氧气(不引入水蒸气或氢气),在优化的工艺条件下制备的薄膜的电子迁移率为25.66cm2/v
    ·
    s。
    34.在上述实施例中,氧化铟含量为98.5-99.5wt%,添加不同含量氧化物的各个不同配方靶材所制备的薄膜均具有非常高的电子迁移率,足以提高太阳能电池的转化效率。
    转载请注明原文地址:https://tc.8miu.com/read-2775.html

    最新回复(0)