一种风电变流器igbt故障识别方法
技术领域
1.本发明涉及风电变流器领域,尤其涉及一种风电变流器igbt故障识别方法。
背景技术:
2.风能在人类生产生活中的利用随处可见,包括发电、提水灌溉、致热供暖等方面,但将其用于发电是其开发利用的最重要的方式。现在,为了满足日益增长的能源需求需要不断对风力发电系统进行优化改革以提高其整体发电效益,这也促使大型风机容量发电机的发展,在全球的电力发展环境中,风力发电在电力市场上占着举足轻重的位置。变流器是风力发电系统的核心部件,但在实际运行中,由于风的不稳定性、电力电子器件的脆弱性及运行环境恶劣等原因,使变流器成为系统中故障率最高的器件。变流器故障可能导致整个电力系统运行中断,变流器最常见的故障为功率管的开路故障和短路故障。当发生短路故障时电路上瞬间产生大电流,大电流会烧断变流器中的熔断装置从而保护装置,因此当发生短路故障时,短路故障会立刻转换成开路故障。
3.国内外有相关对功率变流器igbt模块开路故障诊断的研究,大致可以分为定性故障诊断和定量故障诊断两类。定性故障诊断包含故障树分析法和专家系统法,其基本思想都是通过运用专家在功率变流器开路故障情况下积累的有效经验和专门知识建立知识库,并对故障状态按照一定逻辑推理以确定诊断结果和故障原因。定量故障诊断又包括电流检测法和电压检测法,是对功率变流器的电流、电压等运行电学参数进行分析和比较,必要时设定阈值,从而进行决策和分类。定性故障诊断的方法直观易懂、思路清晰、逻辑性强,非常适用于简单系统。但随着功率变流器系统复杂性程度增加、知识库不够全面、逻辑推理过程异常复杂,造成诊断搜索过程困难,且故障诊断准确度较低。为了提高故障诊断的效率和准确度,定性故障诊断一般与定量故障诊断结合使用。还有根据标准化的平均电流,采用park矢量法,对三电平变流器的多开路故障进行检测和定位,但此方法在负载发生突变时易发生故障误报或不报等问题。还有为了得到与时间有关的频率信息,通常采用联合时频分析方法,例如短时傅里叶变换、小波变换等。但是这些线性时频变换受到窗函数的影响,时间分辨率和频率辨率相互约束,无法同时达到最优。
4.本文针对风电变流器特征提取的问题,将原始电流信号用变分模态分解算法处理得到若干本征模函数,并对其进行特征提取构成高维输入向量,通过分类器实现风机部件故障状态的识别。该方法可有效地对故障类型做出准确的识别,对变流器故障预警具有实用性。
技术实现要素:
5.本发明所要解决的技术问题是克服现有技术中存在的不足,提供一种风电变流器igbt故障识别方法,优化变流器故障信号特征参数提取问题。
6.本发明是通过以下技术方案予以实现:
7.一种优化特征向量参数提取的风电变流器igbt故障识别方法,包括以下步骤:
8.s1:针对变流器各个正常状态、各类故障状态的电三相流信号进行采样,组成数据集;
9.s2:利用算法寻优变分模态分解的模态分解个数k和惩罚因子α最优参数组合;
10.s3:参数优化后对各个电流信号进行分解,每种状态得到若干模态分量imf;
11.s4:对分解后的imf进行有效特征值提取;
12.s5:将构成特征向量输入到分类器中进行故障识别;
13.根据上述技术方案,优选地,在所述步骤s1中,所述变流器为三相变流器,常见的故障电路为一个igbt开路或者两个igbt开路,对变流器进行仿真模拟,共有21种故障电路,模拟得到该变流器不同故障状态下的三相电流信号。
14.根据上述技术方案,优选地,在所述步骤s2中,用鲸群算法寻找k、α最优解。
15.根据上述技术方案,优选地,所述优化参数算法的数学建模为:
16.(1)发现猎物的数学建模。
17.自然界中种群感知猎物位置,假定目标猎物就是当前最优解或者接近最优解,搜索个体将不断以收缩环绕方式更新位置,来靠近最优解,这一行为可以表达为:
[0018][0019]
式中:是搜索个体和最优解之间距离向量;是搜索个体的位置向量;是最优解的位置向量;t是迭代次数。
[0020]
和为系数向量,其定义如下:
[0021][0022]
式中:是随迭代次数增加由2到0递减;为[0,1]随机数。
[0023]
(2)螺旋环绕包围猎物,并用气泡网方式捕获猎物数学建模(开发阶段)。
[0024]
搜索个体的螺旋更新方式如下:
[0025][0026]
式中:为搜索个体和最优解之间距离向量b为定义螺旋形式的常数;l为[-1 1]之间随机数。
[0027]
搜索个体以收缩环绕方式和螺旋更新方式更新位置,假设两种方式执行概率p各为50%,搜索个体总位置向量表达式如下:
[0028][0029]
(3)再捕获猎物数学建模(再搜索阶段)。
[0030]
同样,基于向量变化也可以用于搜索阶段。相比于开发阶段,个体位置按随机位置搜索,而不是最佳搜索个体;建模时使用向量强制搜索个体远离参考位置。
[0031]
位置更新表达式如下:
[0032][0033]
式中:为随机个体;随机分量绝对值大于1。
[0034]
整个算法搜索个体,通过随机个体和最优个体更新自身位置;并随着迭代次数t的增加,不断逼近最优解。
[0035]
根据上述技术方案,优选地,在所述步骤s3中,将信号分解到k个imf分量。
[0036]
根据上述技术方案,优选地,在所述步骤s4中,选取排列熵和均方根然构造特征向量。
[0037]
根据上述技术方案,优选地,所述排列熵和均方根然表达式为:
[0038]
均方根能反映信号在时域上的幅值变化,而排列熵可通过相邻时间段的数据来判断时间序列的复杂性。选取均方根值和排列熵来构造样本的特征向量,从而有效地表征电流信号的故障状态。
[0039]
均方根值作为一种反映信号波动大小的指标被广泛应用:
[0040][0041]
排列熵是一种衡平均熵参数,优点是计算简单、抗噪声能力强、计算值稳定等。当一维序列xi在
[0042]
相空间重构时,每一种排列顺序出现的概率构成一组序列[p1,p2,
…
,p
l
,
…
,p
m!
],其中p
l
为第l种排列出现的概率,则排列熵和其归一化为
[0043][0044]
pe=pe(m)/ln(m!)。
[0045]
根据上述技术方案,优选地,在所述步骤s5中,排列熵和均方根植构成高维特征向量,分类器由两层无监督的神经网络(第一层被称为可见层,第二层被称为隐藏层)和一层有监督的反向传播神经网络构成。
[0046]
本发明的有益效果是:通过通过优化变分模态参数,选择最优模态分解个数k和惩罚因子α最优参数组合,然后对电流信号进行分解,每种状态得到若干模态分量imf,选择其排列熵和均方根作为高维特征向量,构造更加准确的特征参数,输入分类器中对其分类,该方法可有效地对故障类型做出准确的识别,对变流器故障预警具有实用性。
附图说明
[0047]
图1示出了本发明的实施例的实现流程图。
[0048]
图2示出了本发明的实施例的优化参数流程图。
[0049]
图3示出了本发明的实施例的分类器整体结构图。
具体实施方式
[0050]
为了使本技术领域的技术人员更好地理解本发明的技术方案,下面结合附图和最佳实施例对本发明作进一步的详细说明。
[0051]
如图所示,本发明一种优化特征向量参数提取的风电变流器igbt故障识别方法,包括以下步骤:
[0052]
s1:针对变流器各个正常状态、各类故障状态的电三相流信号进行采样,组成数据集;
[0053]
s2:利用算法寻优变分模态分解的模态分解个数k和惩罚因子α最优参数组合;
[0054]
s3:参数优化后对各个电流信号进行分解,每种状态得到若干模态分量imf;
[0055]
s4:对分解后的imf进行有效特征值提取;
[0056]
s5:将构成特征向量输入到分类器中进行故障识别;
[0057]
根据上述技术方案,优选地,在所述步骤s1中,所述变流器为三相变流器,常见的故障电路为一个igbt开路或者两个igbt开路,对变流器进行仿真模拟,共有21种故障电路,模拟得到该变流器不同故障状态下的三相电流信号。
[0058]
根据上述技术方案,优选地,在所述步骤s2中,用鲸群算法寻找k、α最优解。
[0059]
根据上述技术方案,优选地,所述优化参数算法的数学建模为:
[0060]
(1)发现猎物的数学建模。
[0061]
自然界中种群感知猎物位置,假定目标猎物就是当前最优解或者接近最优解,搜索个体将不断以收缩环绕方式更新位置,来靠近最优解,这一行为可以表达为:
[0062][0063]
式中:是搜索个体和最优解之间距离向量;是搜索个体的位置向量;是最优解的位置向量;t是迭代次数。
[0064]
和为系数向量,其定义如下:
[0065][0066]
式中:是随迭代次数增加由2到0递减;为[0,1]随机数。
[0067]
(2)螺旋环绕包围猎物,并用气泡网方式捕获猎物数学建模(开发阶段)。
[0068]
搜索个体的螺旋更新方式如下:
[0069][0070]
式中:为搜索个体和最优解之间距离向量b为定义螺旋形式的常数;l为[-1 1]之间随机数。
[0071]
搜索个体以收缩环绕方式和螺旋更新方式更新位置,假设两种方式执行概率p各为50%,搜索个体总位置向量表达式如下:
[0072][0073]
(3)再捕获猎物数学建模(再搜索阶段)。
[0074]
同样,基于向量变化也可以用于搜索阶段。相比于开发阶段,个体位置按随机位置搜索,而不是最佳搜索个体;建模时使用向量强制搜索个体远离参考位置。
[0075]
位置更新表达式如下:
[0076][0077]
式中:为随机个体;随机分量绝对值大于1。
[0078]
整个算法搜索个体,通过随机个体和最优个体更新自身位置;并随着迭代次数t的增加,不断逼近最优解。
[0079]
根据上述技术方案,优选地,在所述步骤s3中,将信号分解到k个imf分量。
[0080]
根据上述技术方案,优选地,在所述步骤s4中,选取排列熵和均方根然构造特征向量。
[0081]
根据上述技术方案,优选地,所述排列熵和均方根然表达式为:
[0082]
均方根能反映信号在时域上的幅值变化,而排列熵可通过相邻时间段的数据来判断时间序列的复杂性。选取均方根值和排列熵来构造样本的特征向量,从而有效地表征电流信号的故障状态。
[0083]
均方根值作为一种反映信号波动大小的指标被广泛应用:
[0084][0085]
排列熵是一种衡平均熵参数,优点是计算简单、抗噪声能力强、计算值稳定等。当一维序列xi在相空间重构时,每一种排列顺序出现的概率构成一组序列[p1,p2,
…
,p
l
,
…
,p
m!
],其中p
l
为第l种排列出现的概率,则排列熵和其归一化为:
[0086][0087]
pe=pe(m)/ln(m!)。
[0088]
根据上述技术方案,优选地,在所述步骤s5中,排列熵和均方根植构成高维特征向量,分类器由两层无监督的神经网络(第一层被称为可见层,第二层被称为隐藏层)和一层有监督的反向传播神经网络构成。
[0089]
针对变流器各个正常状态、各类故障状态的电三相流信号进行采样,组成数据集;
[0090]
利用算法寻优变分模态分解的模态分解个数k和惩罚因子α最优参数组合;
[0091]
分解过程中的模态分量k和惩罚因子α的选取直接关系着其的分解效果。如果分量个数k取值过小,可能造成模态混叠的现象;k值过大,分解的结果中就可能产生虚假分量,
不利于分析。而二次惩罚因子α的取值越小,则分解后的各imf分量的带宽越大;反之,α越大,则各个imf分量的带宽越小。所以,选择适当的k、α值对分解效果非常重要。对于优化问题,首先需要设定一个适应度函数,以此函数来确定最佳参数。故使用寻优算法对其进行参数优化时,需设定一个适应度函数来进行迭代寻优,确定最佳参数组合。包络熵反映了信号的稀疏特性,若信号经过分解后imf分量中含有较多的周期性故障冲击信息时,则其稀疏特性强,包络熵值小;反之,如果分解后分量中只有较少的周期性故障冲击信息时,则其稀疏特性弱,包络熵值大。本文中将分解后的局部极小包络熵作为寻优算法中的适应度函数,搜寻最优的参数组合[k,α],即模态分量个数和二次惩罚因子。包络熵ep的计算公式为:
[0092][0093]
式中:pi为a(i)的归一化形式;a(i)是信号x(i)经hilbert解调后得到的包络信号,n为因子长度;
[0094]
采用寻优算法优化变分模态分解参数步骤:
[0095]
(1)确定适应度函数,设集合个体的解为(α,k),初始化算法参数;
[0096]
(2)将信号进行分解过程得到各个imf,根据式子计算每个imf的包络熵;
[0097]
(3)将最小包络熵值作为适应度函数进行全局搜索;
[0098]
(4)根据式式更新鲸鱼个体的位置;
[0099]
(5)重复步骤(3)至步骤(5),只要达到包络熵值最小或者达到设定的最大迭代次数,则输出最佳参数组合个体(α,k);
[0100]
参数优化过后对各个电流信号进行分解,每种状态得到若干模态分量;
[0101]
此分解方法能够自适应匹配每种模态的最佳中心频率和有限带宽,实现固有模态分量(imf)有效分离,其核心思想是构建和求解变分问题。将原始信号分解为k个imf的如下变分模型:
[0102][0103]
其中:uk代表分解后的模分量wk代表每个模分量中心频率集合,δ(t)是狄拉克函数,k为模态个数,f为原始信号,为经过hilbert变换后uk(t)的频谱,*为卷积运算,为梯度运算。
[0104]
为求解上式,引入lagrange乘法算子λ,使约束变分问题转化为非约束变分问题,
得到增广lagrange表达式为
[0105][0106]
式中:α是惩罚因子,λ为lagrange算子,采用交替方向乘子法将原始最小化问题转化为增广拉格朗日函数的鞍点问题。
[0107]
变分模态算法实现步骤为:
[0108]
(a)初始化{λ1}和n,设为0,并选择合适模态个数k和惩罚参数α。
[0109]
(b)对λ1进行迭代更新。
[0110][0111]
(c)判断是否满足终止条件,
[0112][0113]
其中分别是f(ω)的傅里叶变换
[0114]
对分解后的imf进行有效特征值提取;
[0115]
选取特征值为排列熵和均方根,排列熵和均方根然表达式为:
[0116]
均方根能反映信号在时域上的幅值变化,而排列熵可通过相邻时间段的数据来判断时间序列的复杂性。选取均方根值和排列熵来构造样本的特征向量,从而有效地表征电流信号的故障状态。均方根值作为一种反映信号波动大小的指标被广泛应用:
[0117][0118]
排列熵是一种衡平均熵参数,优点是计算简单、抗噪声能力强、计算值稳定等。当一维序列xi在相空间重构时,每一种排列顺序出现的概率构成一组序列[p1,p2,
…
,p
l
,
…
,p
m!
],其中p
l
为第l种排列出现的概率,则排列熵和其归一化为:
[0119]
[0120]
pe=pe(m)/ln(m!)
[0121]
将构成特征向量输入到分类器中进行故障识别;
[0122]
分类器由两层无监督的神经网络(第一层被称为可见层,第二层被称为隐藏层)和一层有监督bp神经网络构成,其训练算法分为两个步骤,即预训练和微调。这样的训练方式使其避免陷入局部最小值,也使训练效率大大提高。
[0123]
分类器具体训练步骤:
[0124]
a)预训练:分别单独无监督的训练每一层反向传播神经网络,确保特征向量映射到不同特征空间,都尽可能的保留特征信息;它通过一个非监督贪婪逐层方法预训练获得权重(即不要类标,不断拟合输入,依次逐层)。在这个过程中,数据输入到可见层,生成一个向量v,在通过权值w传给隐藏层,得到h,由于隐藏层之间是无连接的,所以可以并行得到隐藏层所有节点值。通过隐层激活单元和可视层输入之间的相关性差别(通过能量函数来度量网络的稳定性,优化函数是根据求能量函数球指数后,归一化,然后最大似然得到)就作为权值更新的主要依据。
[0125]
b)微调:在最后一层设置反向传播神经网络,接收浅层神经网络的输出特征向量作为它的输入特征向量,即排列熵和均方根,有监督地训练实体关系分类器.而且每一层浅层神经网络只能确保自身层内的权值对该层特征向量映射达到最优,并不是对整个分类器的特征向量映射达到最优,所以反向传播网络还将错误信息自顶向下传播至每一层浅层神经网络,微调整个网络.浅层神经网络训练模型的过程可以看作对一个深层反向传播神经网络网络权值参数的初始化,使其克服了反向传播神经网络因随机初始化权值参数而容易陷入局部最优和训练时间长的缺点。
[0126]
本发明的有益效果是:通过通过优化变分模态参数,选择最优模态分解个数k和惩罚因子α最优参数组合,然后对电流信号进行分解,每种状态得到若干模态分量imf,选择其排列熵和均方根作为高维特征向量,构造更加准确的特征参数,输入分类器中对其分类,该方法可有效地对故障类型做出准确的识别,对变流器故障预警具有实用性。
[0127]
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。
转载请注明原文地址:https://tc.8miu.com/read-2893.html