乙二醇缩酮-ε-己内酯-ε-己内酯)-聚乙二醇单甲醚;
9.步骤二,键接紫杉醇分子的聚(5-乙二醇缩酮-ε-己内酯-ε-己内酯)-聚乙二醇单甲醚的合成:将步骤一中的产物溶解于二氯甲烷中,在冰水浴条件滴加溶解有三光气的二氯甲烷溶液,孵育30分钟后,加入溶解有2-羟乙基二硫化物的二氯甲烷溶液;在室温下反应24h后,滴加到预冷的乙醚中沉淀,过滤后得到产物;进一步的,将产物溶解在四氢呋喃中,透析后冻干产物;
10.步骤三,rgd环肽-聚乙二醇-聚(5-乙二醇缩酮-ε-己内酯-ε-己内酯)合成:将步骤一中的聚乙二醇单甲醚更换为琥珀酰亚胺酯-聚乙二醇(分子量为2000kda),其余步骤和步骤一相同,合成琥珀酰亚胺酯-聚乙二醇-聚(5-乙二醇缩酮-ε-己内酯-ε-己内酯);取上述聚合物溶解到pbs中,加入环状rgd多肽,再孵育24小时,然后透析纯化后得到产物;
11.步骤四,纳米胶束的制备:取步骤一、步骤二和步骤三中制备的聚合物,用四氢呋喃溶解后,逐滴滴入到去离子水中,在室温下充分搅拌,将四氢呋喃挥发后,得到由所制备的三种聚合物组成的纳米胶束;
12.步骤五,取步骤四中制备的功能性纳米胶束分散液,加入α-环糊精分散液后,充分搅拌和超声后,得到凝胶。
13.进一步地,所述步骤四中的聚合物一、聚合物二和聚合物三的质量比为10:(1-5):(0.1-2)。
14.进一步地,步骤五中纳米胶束分散液的质量浓度为15%-20%;α-环糊精的质量浓度为6%-9%。
15.进一步地,所述步骤四中的聚合物一、聚合物二和聚合物三的质量比为10:4:1。
16.进一步地,步骤五中纳米胶束分散液的质量浓度为20%;α-环糊精的质量浓度为8%。
17.本发明提供的第二方面为,根据所述的制备方法制备获得的能够在凝胶溶蚀过程中逐渐释放纳米胶束的凝胶。
18.进一步地,释放的纳米胶束粒径为150-200nm。
19.进一步地,释放的纳米胶束能够响应谷胱甘肽释放紫杉醇药物。
20.进一步地,释放的纳米胶束能够特异性的靶向肿瘤细胞。
21.本发明提供的第三方面为,根据所述的制备方法制备获得的具有靶向肿瘤细胞功能的凝胶在制备注射类抗肿瘤药物上的应用。
22.本发明的技术在于提供具有一定亲疏水比例的两亲性聚合物在水中能够自组装成为纳米胶束,本发明中制备了具有特定亲疏水比例的两亲性聚合物;通过二硫键在聚合物的疏水端上键接上紫杉醇药物分子得到一种含有紫杉醇药物的聚合物;在聚合物的亲水端键接上能够特异性识别肿瘤细胞表面整合素的环状rgd肽段,得到具有靶向基团的聚合物;上述三种聚合物自组装形成的纳米胶束,紫杉醇药物分子在纳米胶束的内核,环状rdg肽段在纳米胶束的亲水外壳;由于聚合物的亲水段为peg链段,其和α-环糊精能够形成聚准轮烷,从而将纳米胶束交联起来,形成凝胶;由于聚准轮烷为交联形成的凝胶具有假塑性和剪切变烯的性质,这就使得凝胶具有可注射的能力;随着环糊精溶解,聚准轮烷被破坏,交联的纳米胶束能够被释放出来;在肿瘤部位释放出的纳米胶束,由于其亲水外层带有识别肿瘤细胞的rgd,因此能够特异性的靶向到肿瘤细胞上,促进肿瘤细胞对纳米胶束的胞吞;
由于肿瘤细胞内含有高浓度的谷胱甘肽,聚合物上的二硫键能够响应谷胱甘肽发生断裂,从而释放出紫杉醇药物;紫杉醇药物能够结合细胞微管,抑制肿瘤细胞的生长和增值,发挥抗肿瘤的效果。
23.和现有技术相比,本发明的优势在于由纳米胶束交联组成的凝胶能够通过注射的方式递送到肿瘤部位,提供一个物理靶向的作用,避免的静脉给药的方式造成的系统毒性;凝胶在原位释放出能够特异性靶向肿瘤细胞的纳米胶束,避免了对肿瘤微环境或是肿瘤组织周围的正常细胞的毒性,提高肿瘤细胞对药物的摄取;纳米胶束能够特异性的响应肿瘤细胞的高浓度的谷胱甘肽快速释放抗肿瘤药物,诱导肿瘤细胞的死亡;此凝胶体系通过层层靶向的作用,最大化的将抗肿瘤药物精准的递送到肿瘤细胞内,提高化疗药物的生物利用度,增强化疗效率。
附图说明
24.图1所示是本发明的聚(5-乙二醇缩酮-ε-己内酯-ε-己内酯)-聚乙二醇单甲醚的结构及1h nmr谱图;
25.图2所示为本发明的键接紫杉醇分子的聚(5-乙二醇缩酮-ε-己内酯-ε-己内酯)-聚乙二醇单甲醚的结构及1h nmr谱图;
26.图3所示为本发明的rgd环肽-聚乙二醇-聚(5-乙二醇缩酮-ε-己内酯-ε-己内酯)的结构及1h nmr谱图;
27.图4所示为本发明的纳米胶束的粒径分布;
28.图5所示为本发明的纳米胶束的透射电镜图;
29.图6所示为本发明的纳米胶束的紫杉醇的体外释放曲线;
30.图7所示为与纳米胶束的孵育的肿瘤细胞4t1的荧光图片;
31.图8所示为与纳米胶束的孵育肿瘤细胞4t1的流式细胞图;
32.图9所示为本发明的纳米胶束对肿瘤细胞4t1的毒性;
33.图10所示为本发明的纳米胶束分散液和制备凝胶照片;
34.图11所示为本发明的凝胶的模量随着剪切应变的变化曲线;
35.图12所示为本发明的冻干后的凝胶的扫描电镜图片;
36.图13所示为不同治疗的荷瘤小鼠肿瘤体积变化曲线;
37.图14所示为不同治疗的荷瘤小鼠体重变化曲线。
具体实施方式
38.下面将结合本发明实施例中的附图1-14,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
39.实施例1,聚合物聚(5-乙二醇缩酮-ε-己内酯-ε-己内酯)-聚乙二醇单甲醚的合成和表征。
40.称取5.0g的聚乙二醇单甲醚(分子量为2000da)加入到25ml的干燥玻璃反应器中,在60℃下真空干燥1小时,在氮气保护下加入2.74g单体5-乙二醇缩酮-ε-己内酯和7.26g的
ε-己内酯,再加入0.1ml的辛酸亚锡,脱气后减压密封。在130℃下搅拌6h后,先溶于二氯甲烷中,再逐滴加入过量的的冷乙醚中沉淀,将沉淀过滤后,在室温下真空干燥得到聚合物聚(5-乙二醇缩酮-ε-己内酯-ε-己内酯)-聚乙二醇单甲醚。
41.合成的聚合物的1h nmr谱图如附图1所示,聚合物的结构和对应的核磁谱峰标注在图中,根据峰面积计算可知,合成的聚合物分子量约5700,包含有27.3个己内酯单元和4.92个5-乙二醇缩酮-ε-己内酯单元;表明聚合物的成功制备。
42.实施例2,二硫键键接了紫杉醇分子的聚合物聚(5-乙二醇缩酮-ε-己内酯-ε-己内酯)-聚乙二醇单甲醚的合成和表征。
43.称取1.0g的实施例1中合成的聚(5-乙二醇缩酮-ε-己内酯-ε-己内酯)-聚乙二醇单甲醚,溶解于10ml的二氯甲烷中,在冰水浴条件滴加溶解有0.05g的三光气的二氯甲烷溶液(5ml),孵育30分钟后,加入溶解有0.052g的2-羟乙基二硫化物的二氯甲烷溶液(5ml)。在室温下反应24h后,滴加到预冷的乙醚中沉淀,过滤后得到产物。进一步的,将产物溶解在10ml的四氢呋喃中,并用截留分子量为3.5kda的透析袋在水中透析,透析后冻干产物。
44.得到的产物的结合和1h nmr谱图如附图2所示。观察到代表紫杉醇的核磁峰(7.2~8.0ppm),表明紫杉醇成功的键接在聚合物链上。根据峰面积计算可知,每个聚合物链上紫杉醇的平均修饰单元为0.78个。
45.实施例3,修饰rgd环肽-聚乙二醇-聚(5-乙二醇缩酮-ε-己内酯-ε-己内酯)合成和表征。
46.将实施例1中的聚乙二醇单甲醚更换为琥珀酰亚胺酯-聚乙二醇(分子量为2000kda),其余步骤和实施例相同,合成琥珀酰亚胺酯-聚乙二醇-聚(5-乙二醇缩酮-ε-己内酯-ε-己内酯);取上述聚合物0.1,溶解到5ml的pbs中,加入0.015g的环状rgd多肽,再孵育24小时。然后透析纯化后得到目标产物。
47.制备得到的产物的结合和1h nmr谱图如附图3所示。观察到代表环状rgd的核磁谱峰,证明环状rgd成功的间接在聚合物链段上。
48.实施例4,纳米胶束的制备。
49.分别称取实施例1、2和3中的聚合物150mg,40mg和10mg,并将其溶解到2ml的四氢呋喃中。将聚合物的四氢呋喃溶液逐滴滴加到5ml的去离子水中,在室温下搅拌24h后,使四氢呋喃充分挥发,获得纳米胶束,命名为ppr-np。称取实施例1和2中的聚合物160mg和40mg,用上述同样的方法制备对照纳米胶束pp-np;称取实施例1和3中的聚合物190mg和10mg,用上述同样的方法制备对照纳米胶束pr-np。
50.实施例5,纳米胶束的粒径和形态表征。
51.用zetasizer nano(malvern,uk)和透射电子显微镜(tem,hitachi h600,japan)对ppr-np纳米胶束的粒径和形态进行表征。
52.ppr-np的粒径分布图如附图4所示,纳米胶束的平均尺寸约为200nm,pdi为0.28;ppr-np的透射电镜图片如附图5所示,胶束的形貌为规则的球形,分散性好。平均直径约为150nm,这种差异可能是由于在tem样品制备过程中聚乙二醇壳层的收缩所致。
53.实施例6,纳米胶束的体外药物释放速率表征。
54.取5ml的纳米胶束分散液放置到透析袋中,将透析袋置于释放液中。体外释放在37℃和70转/分振荡下进行,在不同时间点下,取出0.1ml的透析袋外的溶液,用液相色谱定量
紫杉醇的浓度,计算紫杉醇的释放量。
55.紫杉醇从ppr-np的释放速率如附图6所示。ppr-np在ph 7.4下有少量的紫杉醇释放,而在含有谷胱甘肽的释放也中表现出了更快的释放速度,ptx的释放量提高到约70%。这些结果证实了所制备的纳米胶束具有谷胱甘肽响应释放行为。
56.实施例7,肿瘤细胞对纳米胶束的胞吞研究。
57.将小鼠乳腺癌细胞系4t1以每孔1
×
105个细胞的密度种植在24孔板上,培养过夜后,用罗丹明标记的ppr-np(100μg/ml)或pp-np(100μg/ml)处理细胞4h。培养结束后,移除培养液,并用pbs洗涤细胞三次。染色细胞核后,用激光共聚焦扫描显微镜观察细胞。另外,用胰蛋白酶处理获得4t1细胞,收集的细胞置于pbs悬液中,在4℃条件下,1000g离心3min。弃去上清以去除培养基中的荧光背景。经过两次的洗涤和离心后,用500μl的pbs重新悬浮细胞,使用流式细胞仪(bd biosciences,usa)进行分析。未用纳米胶束处理的细胞作为对照,进行流式细胞分析。
58.肿瘤细胞胞吞纳米胶束的共聚焦荧光照片如附图7所示,与ppr-np孵育的细胞内荧光比与pp-np孵育的细胞内荧光强得多;用流式细胞术测定荧光强度结构如附图8所示,ppr-np组的荧光强度约为pp-np组的10倍,与荧光成像一致。这些结果表明,修饰的环状rgd可以有效提高对肿瘤细胞的靶向能力,从而增强肿瘤细胞对纳米胶束的胞吞。
59.实施例8,纳米胶束的体外细胞毒性表征。
60.将小鼠乳腺癌细胞系4t1以每孔1
×
104个细胞的密度种植在96孔板上,培养过夜后,用不同浓度的pr-np和ppr-np处理细胞,培养24小时后,采用mtt法测定细胞活力。细胞存活率相对于未处理细胞的平均百分比数据计算出来的。
61.检测的细胞毒性结果如附图9所示,实验组对4t1细胞均表现出剂量依赖性毒性。ppr-np处理组比pp-np处理组具有更高的肿瘤细胞抑制效果。
62.实施例9,凝胶的制备。
63.配制α-环糊精的分散液(500mg/ml),将纳米胶束溶液(25%,质量浓度)和配制的α-环糊精的分散液按照体积比为4:1混合后,搅拌3分钟,超声3分钟,静置2分钟后得到凝胶。
64.纳米胶束和加入α-环糊精后得到的凝胶图片如附图10所示,翻转小瓶,没有液体向下流动,证明凝胶的形成。
65.实施例10,凝胶的表征。
66.将实施例9中制备的凝胶放置于直径25mm、间隔0.5mm的平行板之间,在样品周围涂上一层液体石蜡以防止水分蒸发。测定凝胶的储存模量和损耗模量随着剪切应变和扫描频率的变化。为了研究凝胶的内部形貌,将水凝胶在液氮中快速冷冻,然后在-50℃真空冻干48h。然后将冻干的水凝胶小心地断裂,用扫描电子显微镜研究水凝胶的内部形貌。
67.所制备的凝胶流变行为如附图12所示,凝胶的存储模量(g)和损耗模量(g")随剪切应变的变化。在低剪切应变下,g'高于g",证明其处于凝胶状态;随着剪切应变的增大,g
′
逐渐减小,g"逐渐增大,当应变大于30%时,g”的值大于g’,证明了由凝胶向溶胶转变,流变学证明所制备的凝胶具有剪切变稀的性质,可以用于注射。凝胶内部形貌的sem图如附图11所示,凝胶呈现出高度均匀的多孔结构,平均孔径约4μm。
68.实施例11,凝胶体内抗肿瘤效果。
69.在小鼠皮下4t1肿瘤模型上评价凝胶的抗肿瘤效果,当小鼠肿瘤体积长到约50mm3时,将小鼠随机分为4组,每组4只小鼠。一组小鼠瘤旁注射实施例9制备的凝胶,注射体积为40μl,含有紫杉醇的量为210μg,实验中只注射一次;另一组小鼠静脉注射紫杉醇溶液(1mg/ml),注射量为200μl,每三天注射一次,共注射3次;一组小鼠不做处理,作为对照组。每隔2天用游标卡尺测量两垂直直径的长度,根据公式v=a
×
b2/2计算肿瘤体积,其中a为长直径,b为短直径。同时记录各组动物的体重,作为系统毒性的指标。
70.不同治疗组小鼠的肿瘤体积如附图13所示,与对照组相比,紫杉醇溶液组和凝胶组均表现出肿瘤抑制作用。但是,凝胶组的抗肿瘤效果明显高于紫杉醇溶液组。在治疗过程中,荷瘤小鼠的平均体重如附图14所示,观察期内没有出现明显的变化,说明给予治疗没有引起明显的全身毒性。
71.尽管已经示出和描述了本发明的实施例,对于本领域的普通技术人员而言,可以理解在不脱离本发明的原理和精神的情况下可以对这些实施例进行多种变化、修改、替换和变型,本发明的范围由所附权利要求及其等同物限制。
转载请注明原文地址:https://tc.8miu.com/read-3045.html