一种定向导电纤维的三维多孔复合支架及其制备方法
1.技术领域
2.本发明属于组织工程支架技术领域,具体涉及一种定向导电纤维的三维多孔复合支架及其制备方法。
背景技术:
3.全世界每年有数百万患者遭受严重的皮肤损失,而由外伤、烧伤或慢性疾病造成的全层皮肤创伤会导致许多生理问题。因此,一旦皮肤受损,迅速和有效的伤口处理是非常有必要的。在体内,细胞外基质(ecm)具有促进细胞粘附、增殖、分化和基因表达的功能,并为细胞生长提供了机械支持。近年来,具有仿生纳米结构及ecm的生化和机械特性的敷料表现出了更好的生物相容性,并可以实现血管化和增强成纤维细胞渗透,从而促进皮肤的愈合。研究表明对于神经和平滑肌血管内皮细胞等在组织的生长上都具有方向性,而具有定向纤维排列的敷料显示了增强细胞排列的能力,并且微纤维之间的间隙可以促进细胞的迁移、生长和分化。与各向同性纤维相比,具有方向性的纤维结构的敷料还可以引导形成定向的毛细血管网络。此外,具有定向纤维多孔结构材料具有良好的力学性能。然而,定向纤维敷料的制备难点在于如何诱导纤维如何取向排列,也正因为此,在大多数敷料在制备过程中通常只利用纤维增强,缺少对敷料内部纤维取向结构的设计,导致敷料诱导细胞定向生长的作用差、细胞扩散和增殖速率慢、组织再生缓慢等。因此,制备具有定向纤维结构的敷料在伤口修复领域具有重要的意义。
技术实现要素:
4.发明目的:针对现有技术中存在的问题,本发明提供一种定向导电纤维的三维多孔复合支架及其制备方法,利用电场作用,将核层为丝素蛋白、壳层为聚合物/导电纳米粒子的纤维在壳聚糖/明胶的溶液中定向排列,利用冷冻干燥的方法制备三维多孔支架材料,这种定向纤维三维多孔支架能够模仿特定结构、生物化学和力学性能的人工基质,并且具有引导细胞和组织再生的作用。
5.技术方案:本发明公开一种定向导电纤维的三维多孔复合支架的制备方法,该方法包括以下步骤:步骤1)将脱胶后的蚕丝溶解于溴化锂水溶液中,离心、过滤、透析和浓缩后得到一定浓度的再生丝素蛋白水溶液;步骤2)将聚合物溶液和导电纳米粒子共混制备均匀的聚合物/导电纳米粒子溶液;步骤3)利用步骤1)所述再生丝素蛋白水溶液进行湿法纺丝,所得纤维浸入所述聚合物/导电纳米粒子溶液,进而制备核层为丝素蛋白、壳层为聚合物/导电纳米粒子的复合纤维;
步骤4)采用乙醇水溶液对步骤3)所述复合纤维进行后处理;步骤5)将步骤4)所得复合纤维切割成短纤维,并加入壳聚糖/明胶的溶液,混合均匀后,将混合溶液放置在一定强度的电场下,一段时间后停止;步骤6)将步骤5)得到溶液进行冷冻干燥,得到定向导电纤维多孔复合支架。
6.进一步地,所述步骤1)中再生丝素蛋白浓度为10~20 wt%。
7.进一步地,步骤2)中所述聚合物为海藻酸钠、玉米醇溶蛋白、聚乙烯醇、聚氧化乙烯、壳聚糖、醋酸纤维素、聚乙烯吡咯烷酮中的一种或几种。
8.进一步地,所述导电纳米粒子为碳纳米管、氨基化石墨烯、二维过渡金属碳化物、银纳米粒子、金纳米粒子中的一种或几种。
9.进一步地,所述聚合物和导电纳米粒子的质量比100:1~10:1。
10.进一步地,所述步骤3)中湿法纺丝过程为:首先对所述再生丝素蛋白水溶液进行湿法纺丝,凝固浴为无水乙醇,挤出速率为0.5~1.0 μl/min,温度15~30℃,湿度45
±
5rh%,然后将纤维浸入聚合物/导电纳米粒子溶液中20~60 min,取出干燥。
11.进一步地,所述步骤4)中乙醇水溶液的体积分数为80 vol.%,处理时间为30 min。
12.进一步地,所述步骤5)中所述短纤维的纤维长度1~5mm,其中复合纤维与壳聚糖/明胶的质量比为1:100~1:10,所述壳聚糖和明胶的质量比为1:1~5:1。
13.进一步地,所述步骤5)中的电场强度为1~50v,在电场中的时间为1~60 min。
14.本发明还公开一种基于上述方法制备的定向导电纤维的三维多孔复合支架。
15.有益效果:本发明的一种定向导电纤维的三维多孔复合支架的制备方法,提出了利用电场促使导电的短纤维在聚合物基体中取向排列的思路,进而通过冷冻干燥方法制备一种具有良好力学性能和定向微纤维排列多孔结构的新型三维伤口敷料。通过制备核层为丝素蛋白、壳层为聚合物/导电纳米粒子的复合纤维,并在电场作用下诱导该复合短纤维在壳聚糖/明胶中形成定向结构,这种定向纤维三维多孔支架能够模仿特定结构、生物化学和力学性能的人工基质,并且具有引导细胞和组织再生的作用。一方面改善支架的力学性能,另一方面定向短纤维的存在可以促进细胞沿纤维轴向生长和增殖,使得所制备的支架有望应用于神经和骨组织工程领域。
附图说明
16.图1为本发明定向核层为再生丝素蛋白、壳层为海藻酸钠/氨基化石墨烯的纤维多孔复合支架的扫描电镜图;图2为本发明细胞在图1所示的纤维多孔复合支架生长3天的激光共聚焦图。
具体实施方式
17.下面结合具体实施例,进一步阐述本发明。应理解,这些实施例仅用于说明本发明而不用于限制本发明的范围。此外应理解,在阅读了本发明讲授的内容之后,本领域技术人员可以对本发明作各种改动或修改,这些等价形式同样落于本技术所附权利要求书所限定的范围。
18.实施例1:
将脱胶后的蚕丝溶解于溴化锂水溶液中,离心、过滤、透析后得到10 wt.%的再生丝素蛋白(rsf)水溶液,将2 wt.%海藻酸钠(sa)和氨基化石墨烯(ng)共混制备均匀的混合溶液,其中sa和ng的质量比为100:1。首先对rsf进行湿法纺丝,以无水乙醇为凝固浴,挤出速率为0.5 μl/min,温度20℃,湿度45rh%,然后将rsf纤维浸入sa/ng混合溶液中20 min后,取出在37℃干燥,从而制备核层为rsf、壳层为sa/ng的复合纤维。采用80 vol.%乙醇水溶液对复合纤维进行后处理0.5h,将复合纤维切割成长度为5 mm的短纤维,并加入壳聚糖/明胶的溶液,其中,复合纤维与壳聚糖/明胶的质量比为1:100,壳聚糖和明胶的质量比为1:1,混合均匀后,将混合溶液放置在10v的电场下,20 min后停止,将上述混合溶液放于-20℃冷冻24h,然后进行冷冻干燥48h,得到定向导电纤维多孔复合支架。
19.实施例2:实施例2与实施例1的不同之处为:实施例2中rsf水溶液的浓度是15 wt.%,采用的是玉米醇溶蛋白(zein)和银(ag)纳米粒子,zein和ag的质量比为20:1,纺丝的挤出速率为0.8 μl/min,温度25℃,湿度48rh%,将rsf纤维浸入zein/ag混合溶液时间为30 min,复合纤维与壳聚糖/明胶的质量比为1:50,壳聚糖和明胶的质量比为2:1,电场强度为20v,其他操作与实施例1一样,如下:将脱胶后的蚕丝溶解于溴化锂水溶液中,离心、过滤、透析后得到15 wt.%的rsf水溶液,将2 wt.%玉米醇溶蛋白(zein)和银(ag)纳米粒子共混制备均匀的混合溶液,其中zein和ag的质量比为20:1。首先对rsf水溶液进行湿法纺丝,以无水乙醇为凝固浴,挤出速率为0.8 μl/min,温度25℃,湿度48rh%,然后将rsf纤维浸入zein/ag混合溶液中30 min后,取出在37℃干燥,从而制备核层为rsf、壳层为zein/ag的复合纤维,采用80 vol.%乙醇水溶液对复合纤维进行后处理0.5h,将复合纤维切割成长度为5 mm的短纤维,并加入壳聚糖/明胶的溶液,其中,复合纤维与壳聚糖/明胶的质量比为1:50,壳聚糖和明胶的质量比为2:1,混合均匀后,将混合溶液放置在20v的电场下,30 min后停止,将上述混合溶液放于-20℃冷冻24h,然后进行冷冻干燥48h,得到定向导电纤维多孔复合支架。
20.实施例3:实施例3与实施例1、例2的不同之处为:实施例3中 rsf水溶液的浓度是20 wt.%,采用的是4 wt.%聚乙烯吡咯烷酮(pvp)和二维过渡金属碳化物(mxene)纳米粒子,pvp和mxene的质量比为50:3,纺丝的挤出速率为1.0 μl/min,温度28℃,湿度50rh%,将rsf纤维浸入pvp/mxene混合溶液时间为50 min,复合纤维与壳聚糖/明胶的质量比为1:20,壳聚糖和明胶的质量比为3:1,电场强度为50v,其他操作与实施例1、例2一样,如下:将脱胶后的蚕丝溶解于溴化锂水溶液中,离心、过滤、透析后得到20 wt.%的rsf水溶液,将4 wt.%聚乙烯吡咯烷酮(pvp)和二维过渡金属碳化物(mxene)纳米粒子共混制备均匀的混合溶液,其中pvp和mxene的质量比为50:3。首先对rsf水溶液进行湿法纺丝,以无水乙醇为凝固浴,挤出速率为1.0 μl/min,温度28℃,湿度50rh%,然后将rsf纤维浸入pvp/mxene混合溶液中50 min后,取出在37℃干燥,从而制备核层为rsf、壳层为pvp/mxene的复合纤维,采用80 vol.%乙醇水溶液对复合纤维进行后处理0.5h,将复合纤维切割成长度为5mm的短纤维,并加入壳聚糖/明胶的溶液,其中,复合纤维与壳聚糖/明胶的质量比为1:20,壳聚糖和明胶的质量比为3:1,混合均匀后,将混合溶液放置在50v的电场下,60 min后停止,将上述混合溶液放于-20℃冷冻24h,然后进行冷冻干燥48h,得到定向导电纤维多孔复
合支架。
21.通过利用力学拉伸机对上述样品进行测试,得到针对实施例1~3得到的样品力学性能的测试结果,参见下表1,表1为实施例1~3得到的样品力学性能结果以及对照组的力学性能结果,其中对照组为壳聚糖/明胶复合支架。
22.表1 实施例1~3得到的样品力学性能结果 对照组实施例1实施例2实施例3拉伸强度(mpa)3.4
±
0.37.9
±
0.610.5
±
0.716.1
±
0.3断裂伸长率(%)4.1
±
0.78.6
±
0.76.9
±
0.85.1
±
0.5参见附图1,图1为定向核层为rsf、壳层为海藻酸钠/氨基化石墨烯的纤维多孔复合支架的扫描电镜图,图2为细胞在图1所示的复合支架生长3天的激光共聚焦图。从图中可以看出,复合纤维镶嵌在多孔材料中,该结构更利于细胞沿某个方向排列生长。
23.上述实施例只为说明本发明的技术构思及特点,其目的在于让熟悉此项技术的人能够了解本发明的内容并据以实施,并不能以此限制本发明的保护范围。凡根据本发明精神实质所做的等效变换或修饰,都应涵盖在本发明的保护范围之内。
转载请注明原文地址:https://tc.8miu.com/read-4144.html