一种功能涂层材料及其制备方法与流程

    专利查询2022-08-01  137



    1.本发明涉及涂层技术领域,尤其涉及一种具有疏水、导电功能的涂层材料及其制备方法。


    背景技术:

    2.电传输部件比如燃料电池等对材料的导电性能、耐蚀性能一般都有较高的要求;此外,燃料电池电堆中,催化层发生电化学反应,多余的水分需要穿过气体扩散层经流道排出,随着电化学反的进行应,气体通道形成两相流动,若产生的水无法顺利排出,就会在流道槽底聚集,形成水淹,使反应物和反应产物进入出反应区域的通道被占据,从而影响燃料电池的性能和使用寿命。


    技术实现要素:

    3.为解决上述问题,本发明提供一种功能涂层材料。
    4.本发明的技术方案是这样实现:包括耐蚀层、疏水层和导电部,所述耐蚀层分布在基材上表面,所述导电部分布在所述耐蚀层上表面,所述疏水层分散分布在所述耐蚀层及导电部上,所述导电部至少有部分从所述疏水层中露出。
    5.根据本发明的另一个实施例,进一步包括,所述导电部材料为碳材料或碳材料掺杂由铂、金、钌、铱以及银组成的群组中的至少一种物质,所述碳材料的含量为5at%~100at%。
    6.根据本发明的另一个实施例,进一步包括,所述碳材料选自由石墨烯、类石墨组成的群组。
    7.根据本发明的另一个实施例,进一步包括,所述导电部以颗粒状分散分布。
    8.根据本发明的另一个实施例,进一步包括,所述导电部的高度为50-500nm,间距为50~200nm,且导电部被疏水层覆盖的比例为30-60%。
    9.根据本发明的另一个实施例,进一步包括,所述疏水层为单层结构或双层结构。
    10.根据本发明的另一个实施例,进一步包括,所述疏水层的疏水材料为a和b 的混合物,a选自纳米二氧化硅或纳米二氧化钛,b选自由全氟辛基三乙氧基硅烷、四甲基环四硅氧烷以及聚四氟乙烯组成的群组,
    11.其中,纳米二氧化硅或纳米二氧化钛在混合物中的质量比为60%~99%。
    12.根据本发明的另一个实施例,进一步包括,所述疏水层的厚度为50-500nm。
    13.此外本技术还提供了一种功能涂层材料的制备方法,包括以下步骤:
    14.(1)将基材进行清洗,去除油污等杂质;
    15.(2)使用pvd或cvd方法沉积耐蚀层:
    16.(3)使用阴极电弧离子镀方法在所述耐蚀层表面沉积颗粒状的导电部;
    17.采用弧源无过滤装置的弧源结构,原材料为按照导电部成分比例冶炼的合金靶材,沉积时靶材电流为100-200a,工作气体为氩气,沉积偏压为0v~-300v,导电部的高度为
    100-500nm、间距为50~500nm,导电部被疏水层覆盖的比例为 30-60%;
    18.(4)沉积疏水层。
    19.优选地,所述步骤(4)中,当疏水层为双层时:采用磁控溅射方法,靶材为钛靶或硅靶,控制钛或硅靶材的沉积电流与氧气流量来控制氧化物的沉积速率,通过偏压、反应气氛及沉积温度来调节形成氧化物的结构,靶材电流为 5-30a,反应气氛为氩气与氧气,沉积温度为50-400℃,沉积氧化物层,氧化物层的厚度为10-300nm;之后使用喷涂或cvd方法将疏水材料沉积到氧化物层表面,且疏水层分散分布,其最大厚度为200nm;
    20.当疏水层为单层时:将疏水材料通过液态喷涂或等离子体喷涂沉积至耐蚀层及导电部表面,且疏水层分散分布,其最大厚度为200nm。
    21.本发明的有益效果是:
    22.本发明提供了一种功能涂层材料,具有疏水、耐蚀的性能,解决了水淹的问题,延长了燃料电池的使用寿命;通过设置颗粒状的导电部,增加导电材料的接触面积,从而增强了涂层的导电性能;且导电部至少有部分被疏水层覆盖,使其不易因摩擦而脱落,增加了涂层的耐磨性。此外,本发明的涂层材料成本低,可通过调整材料配比获得电学及耐蚀性能兼顾的涂层材料。
    附图说明:
    23.图1为本发明功能涂层材料的结构示意图;
    24.图2为单层疏水层的结构示意图;
    25.图3为双层疏水层的结构示意图;
    26.图4为导电部与疏水层的分布示意图。
    27.图中:1基体;2耐蚀连接层;3耐蚀层;4导电部;41露出部;42覆盖部; 5疏水层,51疏水层a,52氧化物层;53疏水层b。
    具体实施方式:
    28.下面结合附图对本发明的较佳实施例进行详细阐述,以使本发明的优点和特征能更易被本领域人员理解,从而对本发明的保护范围做出更为清楚明确的界定。
    29.实施例1
    30.见图1至图4,一种功能涂层材料,包括耐蚀层3、疏水层5和导电部4,所述耐蚀层3分布在基材1上表面,所述导电部4分布在所述耐蚀层3上表面,所述疏水层5分散分布在所述耐蚀层3及导电部4上,所述导电部4至少有部分从所述疏水层5中露出。
    31.如图3所示,疏水层分散分布,导电部4上可以被疏水层5全部覆盖、部分覆盖或者完全露出。当导电部4被疏水层5部分覆盖时,导电部4包括覆盖部42和露出部41。
    32.此外,为了提高耐蚀层3与基材1之间的结合力,所述耐蚀层3和基体1 之间还可设有耐蚀连接层2,所述耐蚀连接层2的材料为钛合金,所述耐蚀层3 的材料为钛合金组分的氮化物层。
    33.所述导电部材料为碳材料或碳材料掺杂由铂、金、钌、铱以及银组成的群组中的至少一种物质,其中碳材料掺杂铂、金、钌、铱、银等金属时,所述碳材料的含量为8at%。碳材料较为廉价,且结构中存在sp2与sp3两种杂化结构,可通过调整sp2与sp3两种杂化结构的
    比例获得电学及耐蚀性能兼顾的材料;此外金、及钌、铱等金属导电良好,耐高电位腐蚀能力优异,在碳材料中掺杂金、钌、铱中的一种或多种,保证导电的同时增强耐高电位能力,同时降低贵金属的使用量,降低成本。
    34.所述碳材料选自由石墨烯、类石墨组成的群组。比如石墨烯、类石墨或两者的混合物。石墨烯具有优异的导电性能,同时由于glc结构中存在sp2与sp3 两种杂化结构,可通过调整比例获得电学及耐蚀性能兼顾的材料,其中sp2:sp3 为5:1-1:1。
    35.所述导电部的高度为55nm、间距为60nm,导电部被疏水层覆盖的比例为 58%。
    36.所述疏水层5的厚度为50nm。
    37.所述疏水层5为单层结构,为疏水材料沉积的疏水层a 51。所述疏水层a 51 的疏水材料为a和b的混合物,a选自纳米二氧化硅或纳米二氧化钛,b选自由全氟辛基三乙氧基硅烷、四甲基环四硅氧烷以及聚四氟乙烯组成的群组,比如全氟辛基三乙氧基硅烷、全氟辛基三乙氧基硅烷和四甲基环四硅氧烷的混合物、四甲基环四硅氧烷和聚四氟乙烯的混合物、或者三者的混合物等。其中,纳米二氧化硅或纳米二氧化钛在相应混合物中的质量比为60%~99%(比如60%、 75%、80%、85%等)。
    38.实施例2
    39.见图3,本实施例中,与实施例1不同的是,所述疏水层为双层结构。其中下层为氧化物层52,比如纳米二氧化硅或纳米二氧化钛层;上层为疏水材料沉积的疏水层b 53;所述疏水材料可与实施例1中相同。
    40.实施例3
    41.本实施例中,与实施例1不同的是,所述导电部材料为碳材料掺杂由铂、金、钌、铱以及银组成的群组中的至少一种物质,比如碳材料掺杂金、钌、铱,碳材料掺杂金、钌,碳材料掺杂钌、银等,其中所述碳材料的含量为50at%。
    42.所述导电部的高度为300nm、间距为130nm,在疏水层中被覆盖的比例为 40%。
    43.所述疏水层5的厚度为280nm。
    44.实施例4
    45.本实施例中,与实施例1不同的是,所述导电部材料为碳材料掺杂由铂、金、钌、铱以及银组成的群组中的至少一种物质,比如碳材料掺杂铂、金、钌,碳材料掺杂钌、铱、银等,其中所述碳材料的含量为90at%。
    46.所述导电部的高度为450nm、间距为180nm,在疏水层中被覆盖的比例为 30%。
    47.所述疏水层5的厚度为380nm。
    48.实施例5
    49.本技术还提供了一种上述各实施例功能涂层材料的制备方法,包括以下步骤:
    50.(1)将基材进行清洗,去除油污等杂质;
    51.(2)使用阴极过滤电弧离子镀方法沉积耐蚀层:
    52.原材料为按照耐蚀层成分比例冶炼的合金靶材,沉积时靶材电流为 100-300a,工作气体为氩气,反应气体为氮气,所形成的金属氮化物为mxny, x:y=1:1。沉积偏压为-50v~-800v,耐蚀层厚度为20nm~1μm。
    53.(3)使用阴极电弧离子镀方法在所述耐蚀层表面沉积颗粒状导电部;
    54.采用弧源无过滤装置的弧源结构,原材料为按照导电部成分比例冶炼的合金靶
    材,沉积时靶材电流为100-200a,工作气体为氩气,沉积偏压为0v~-300v,导电部的高度为100-500nm、间距为50~500nm,导电部被疏水层覆盖的比例为 30-60%。
    55.(4)沉积疏水层
    56.该步骤(4)中,当制备多层疏水结构时:采用磁控溅射方法,靶材为钛靶或硅靶,控制钛或硅靶材的沉积电流与氧气流量来控制氧化物的沉积速率,通过偏压、反应气氛及沉积温度来调节形成氧化物的结构,靶材电流为5-30a,反应气氛为氩气与氧气,沉积温度为50-400℃,沉积氧化物层51,氧化物层51 的厚度为10-300nm;之后使用喷涂或cvd方法将疏水材料沉积到氧化物层51 表面,形成疏水层b52,且疏水层b52分散分布,其最大厚度为200nm;
    57.当制备单层结构时:将疏水材料通过液态喷涂或等离子体喷涂沉积至耐蚀层及导电部表面,形成疏水层a51,疏水层a51分散分布,其最大厚度为200nm。
    58.疏水材料为a和b的混合物,a选自纳米二氧化硅或纳米二氧化钛,b选自由全氟辛基三乙氧基硅烷、四甲基环四硅氧烷以及聚四氟乙烯组成的群组,比如全氟辛基三乙氧基硅烷、全氟辛基三乙氧基硅烷和四甲基环四硅氧烷的混合物、四甲基环四硅氧烷和聚四氟乙烯的混合物、或者三者的混合物等。
    59.当耐蚀层3和基体1之间设有耐蚀连接层2时,耐蚀连接层可采用pvd或 cvd以及其他可实现该目的的方法沉积到基材1上。
    60.以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。

    技术特征:
    1.一种功能涂层材料,其特征在于:包括耐蚀层、疏水层和导电部,所述耐蚀层分布在基材上表面,所述导电部分布在所述耐蚀层上表面,所述疏水层分散分布在所述耐蚀层及导电部上,所述导电部至少有部分从所述疏水层中露出。2.根据权利要求1所述的功能涂层材料,其特征在于:所述导电部材料为碳材料或碳材料掺杂由铂、金、钌、铱以及银组成的群组中的至少一种物质,所述碳材料的含量为5at%~100at%。3.根据权利要求2所述的功能涂层材料,其特征在于:所述碳材料选自由石墨烯、类石墨组成的群组。4.根据权利要求1所述的功能涂层材料,其特征在于:所述导电部以颗粒状分散分布。5.根据权利要求4所述的功能涂层材料,其特征在于:所述导电部的高度为50-500nm,间距为50~200nm,且导电部被疏水层覆盖的比例为30-60%。6.根据权利要求1所述的功能涂层材料,其特征在于:所述疏水层为单层结构或双层结构。7.根据权利要求1所述的功能涂层材料,其特征在于:所述疏水层的疏水材料为a和b的混合物,a选自纳米二氧化硅或纳米二氧化钛,b选自由全氟辛基三乙氧基硅烷、四甲基环四硅氧烷以及聚四氟乙烯组成的群组,其中,纳米二氧化硅或纳米二氧化钛在混合物中的质量比为60%~99%。8.根据权利要求1所述的功能涂层材料,其特征在于:所述疏水层的厚度为50-500nm。9.一种功能涂层材料的制备方法,其特征在于:包括以下步骤:(1)将基材进行清洗,去除油污等杂质;(2)使用pvd或cvd方法沉积耐蚀层:(3)使用阴极电弧离子镀方法在所述耐蚀层表面沉积颗粒状的导电部;采用弧源无过滤装置的弧源结构,原材料为按照导电部成分比例冶炼的合金靶材,沉积时靶材电流为100-200a,工作气体为氩气,沉积偏压为0v~-300v,导电部的高度为100-500nm、间距为50~500nm,导电部被疏水层覆盖的比例为30-60%;(4)沉积疏水层。10.根据权利要求9所述的功能涂层材料的制备方法,其特征在于:所述步骤(4)中,疏水层为双层或单层结构;当疏水层为双层时:采用磁控溅射方法,靶材为钛靶或硅靶,控制钛或硅靶材的沉积电流与氧气流量来控制氧化物的沉积速率,通过偏压、反应气氛及沉积温度来调节形成氧化物的结构,靶材电流为5-30a,反应气氛为氩气与氧气,沉积温度为50-400℃,沉积氧化物层,氧化物层的厚度为10-300nm;之后使用喷涂或cvd方法将疏水材料沉积到氧化物层表面,且疏水层分散分布,其最大厚度为200nm;当疏水层为单层时:将疏水材料通过液态喷涂或等离子体喷涂沉积至耐蚀层及导电部表面,且疏水层分散分布,其最大厚度为200nm。

    技术总结
    本发明提供了一种功能涂层材料,包括耐蚀层、疏水层和导电部,所述耐蚀层分布在基材上表面,所述导电部分布在所述耐蚀层上表面,所述疏水层分散分布在所述耐蚀层及导电部上,所述导电部至少有部分从所述疏水层中露出。本发明提供的功能涂层材料,具有疏水、耐蚀的性能,解决了水淹的问题,延长了燃料电池的使用;此外,通过设置颗粒状的导电部,增加导电材料的接触面积,从而增强了涂层的导电性能;导电部部分被疏水层覆盖,使其不易因摩擦而脱落,增加了涂层的耐磨性。加了涂层的耐磨性。加了涂层的耐磨性。


    技术研发人员:韩治昀 魏科科 付宇
    受保护的技术使用者:常州翊迈新材料科技有限公司
    技术研发日:2021.12.08
    技术公布日:2022/5/25
    转载请注明原文地址:https://tc.8miu.com/read-4972.html

    最新回复(0)