机械臂结构参数的补偿模型获取方法和补偿方法与流程

    专利查询2022-08-12  119



    1.本技术涉及机械臂控制技术领域,具体而言,涉及一种机械臂结构参数的补偿模型获取方法和补偿方法。


    背景技术:

    2.现有机械臂在工作过程由于机械臂本身的结构参数误差(如连杆长度误差、关节转角误差等),使得机械臂末端理论位置与实际位置之间存在误差,若能够有效地对机械臂自身结构参数进行误差补偿,则可以减小机械臂末端位置理论与实际的误差,从而提高机械臂的精度性能。


    技术实现要素:

    3.本技术的目的在于提供一种机械臂结构参数的补偿模型获取方法和补偿方法,可得到能够有效地对机械臂自身结构参数进行误差补偿的补偿模型,以对机械臂自身结构参数进行误差补偿。
    4.第一方面,本技术提供了一种机械臂结构参数的补偿模型获取方法,用于获取机械臂的结构参数补偿模型,包括步骤:a1.获取机械臂末端在多个目标点处的目标位姿和实测位姿;a2.根据所述多个目标点的目标位姿和实测位姿,计算得到多个第一位姿误差数据;a3.创建bp神经网络模型;所述bp神经网络模型以所述机械臂末端的第一位姿误差数据为输入,以所述机械臂的结构参数误差为输出数据,并以根据所述输出数据进行补偿后的理论位姿与对应的实测位姿之间的等效误差为指标;a4.利用所述第一位姿误差数据对所述bp神经网络模型进行训练,直到所述指标满足要求。
    5.通过该方法得到的结构参数补偿模型,在使用时,当输入机械臂末端的位姿误差数据后,能够输出机械臂的结构参数误差,使用该结构参数误差对机械臂的结构参数进行补偿后,能够保证补偿后的理论位姿与对应的实测位姿之间的等效误差足够小,从而,有效地对机械臂自身结构参数进行误差补偿。
    6.优选地,所述第一位姿误差数据包括三个坐标误差数据和三个姿态角度误差数据;所述结构参数误差包括所述机械臂的各连杆的长度误差和各关节的转角误差;所述bp神经网络模型包括输入层、隐含层和输出层,所述输入层的神经元个数为6,所述输出层的神经元个数小于或等于所述机械臂的连杆数量和关节数量之和。
    7.优选地,所述指标为:;
    其中,为所述指标,为所述目标点的总个数,为第个所述目标点的实测位姿,为第个所述目标点的根据所述输出数据进行补偿后的理论位姿。
    8.利用补偿后末端的理论位姿与实测位姿之间的等效误差作为指标,保证连杆长度和关节转角补偿后实现末端定位精度的提高。
    9.优选地,步骤a4包括:a401.初始化所述输入层到所述隐含层的权值、所述隐含层到所述输出层的权值、所述输入层到所述隐含层的阈值和所述隐含层到所述输出层的阈值;a402.把一未使用的所述第一位姿误差数据输入所述输入层,以计算得到所述输出数据;a403.计算各所述目标点的根据所述输出数据进行补偿后的理论位姿;a404.根据各所述目标点的所述理论位姿和所述实测位姿计算所述指标;a405.判断所述指标是否满足要求;a406.若否,则更新所述输入层到所述隐含层的权值、所述隐含层到所述输出层的权值、所述输入层到所述隐含层的阈值和所述隐含层到所述输出层的阈值,并返回步骤a402;a407.若是,则结束训练。
    10.优选地,步骤a401包括:把所述输入层到所述隐含层的权值、所述隐含层到所述输出层的权值、所述输入层到所述隐含层的阈值和所述隐含层到所述输出层的阈值设置为0和1之间的随机数。
    11.优选地,步骤a402包括:由所述隐含层根据以下公式计算隐含层输出:;其中,为所述隐含层的第个神经元的所述隐含层输出,为所述隐含层的神经元的个数,为所述输入层的第个神经元到所述隐含层的第个神经元的权值,为所述输入层的第个神经元的输入数据, 为所述输入层的第个神经元到所述隐含层的第个神经元的阈值,为激活函数,所述激活函数为:,为自变量;由所述输出层根据以下公式计算所述输出数据:;其中,为所述输出层的第个神经元的所述输出数据,为所述隐含层的第个神经元到所述输出层的第个神经元的权值,为所述隐含层的第个神经元到所述输出层的第个神经元的阈值,为输出层的神经元的数量。
    12.优选地,步骤a403包括:获取所述机械臂末端在各所述目标点处的实际关节角度数据;根据所述输出数据对所述机械臂各连杆的长度和所述实际关节角度数据进行补偿;根据补偿后的各连杆的长度和补偿后的实际关节角度数据,采用机器人运动学正解算法计算各所述目标点的所述理论位姿。
    13.优选地,步骤a405包括:若所述指标不大于预设的最大期望误差,则判定所述指标满足要求,否则,判定所述指标不满足要求。
    14.优选地,步骤a406包括:根据以下公式更新所述输入层到所述隐含层的权值:;其中,为所述输入层的第个神经元到所述隐含层的第个神经元的更新后的权值,为所述输入层的第个神经元到所述隐含层的第个神经元的权值,为预设的学习率,为所述隐含层的第个神经元的隐含层输出,为所述输入层的第个神经元的输入数据,为所述隐含层的神经元的个数,为所述指标,为输出层的神经元的数量;根据以下公式更新所述隐含层到所述输出层的权值:;其中,为所述隐含层的第个神经元到所述输出层的第个神经元的更新后的权值,为所述隐含层的第个神经元到所述输出层的第个神经元的权值;根据以下公式更新所述输入层到所述隐含层的阈值:;其中,为所述输入层的第个神经元到所述隐含层的第个神经元的更新后的阈值,为所述输入层的第个神经元到所述隐含层的第个神经元的阈值;根据以下公式更新所述隐含层到所述输出层的阈值:;
    其中,为所述隐含层的第个神经元到所述输出层的第个神经元的更新后的阈值,为所述隐含层的第个神经元到所述输出层的第个神经元的阈值。
    15.上述训练过程,实际上是使用最快下降法对bp神经网络模型进行训练,并通过反向传播来不断调整网络的权值和阈值,使网络的输出误差最小。
    16.第二方面,本技术提供了一种机械臂结构参数的补偿方法,包括步骤:获取机械臂末端的目标位姿和实测位姿;计算所述实测位姿与所述目标位姿之间的位姿误差数据;把所述位姿误差数据输入预先训练好的结构参数补偿模型,得到所述结构参数补偿模型输出的结构参数误差;所述结构参数补偿模型为通过前文所述的机械臂结构参数的补偿模型获取方法获取的结构参数补偿模型;根据所述结构参数误差对所述机械臂的结构参数进行补偿。
    17.由于使用通过前文所述的机械臂结构参数的补偿模型获取方法获取的结构参数补偿模型来进行结构参数误差的提取,得到的结构参数误差可靠性好,能够有效地对机械臂自身结构参数进行误差补偿,提高机械臂末端定位精度。
    18.有益效果:本技术提供的机械臂结构参数的补偿模型获取方法和补偿方法,通过获取机械臂末端在多个目标点处的目标位姿和实测位姿;根据所述多个目标点的目标位姿和实测位姿,计算得到多个第一位姿误差数据;创建bp神经网络模型;所述bp神经网络模型以所述机械臂末端的第一位姿误差数据为输入,以所述机械臂的结构参数误差为输出数据,并以根据所述输出数据进行补偿后的理论位姿与对应的实测位姿之间的等效误差为指标;利用所述第一位姿误差数据对所述bp神经网络模型进行训练,直到所述指标满足要求;从而,可得到可靠的结构参数补偿模型,使用该结构参数补偿模型可得到可靠的结构参数误差,能够有效地对机械臂自身结构参数进行误差补偿,提高机械臂末端定位精度。
    19.本技术的其他特征和优点将在随后的说明书阐述,并且,部分地从说明书中变得显而易见,或者通过实施本技术了解。
    附图说明
    20.图1为本技术实施例提供的机械臂结构参数的补偿模型获取方法的流程图。
    21.图2为bp神经网络模型训练过程的流程图。
    22.图3为本技术实施例提供的机械臂结构参数的补偿方法的流程图。
    具体实施方式
    23.下面将结合本技术实施例中附图,对本技术实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本技术一部分实施例,而不是全部的实施例。通常在此处附图中描述和示出的本技术实施例的组件可以以各种不同的配置来布置和设计。因此,以下对在附图中提供的本技术的实施例的详细描述并非旨在限制要求保护的本技术的范围,而是仅仅表示本技术的选定实施例。基于本技术的实施例,本领域技术人员在没有做出创造性劳动的前提下所获得的所有其他实施例,都属于本技术保护的范围。
    24.应注意到:相似的标号和字母在下面的附图中表示类似项,因此,一旦某一项在一个附图中被定义,则在随后的附图中不需要对其进行进一步定义和解释。同时,在本技术的描述中,术语“第一”、“第二”等仅用于区分描述,而不能理解为指示或暗示相对重要性。
    25.请参照图1,图1是本技术一些实施例中的一种机械臂结构参数的补偿模型获取方法,用于获取机械臂的结构参数补偿模型,包括步骤:a1.获取机械臂末端在多个目标点处的目标位姿和实测位姿;a2.根据多个目标点的目标位姿和实测位姿,计算得到多个第一位姿误差数据;a3.创建bp神经网络模型;bp神经网络模型以机械臂末端的第一位姿误差数据为输入,以机械臂的结构参数误差为输出数据,并以根据输出数据进行补偿后的理论位姿与对应的实测位姿之间的等效误差为指标;a4.利用第一位姿误差数据对bp神经网络模型进行训练,直到指标满足要求。
    26.通过该方法得到的结构参数补偿模型,在使用时,当输入机械臂末端的位姿误差数据后,能够输出机械臂的结构参数误差,使用该结构参数误差对机械臂的结构参数进行补偿后,能够保证补正后的理论位姿与对应的实测位姿之间的等效误差足够小(从而确保了在补偿后,通过计算确定的机械臂末端能够到达的位姿与实际达到的位姿之间的偏差足够小),从而,有效地对机械臂自身结构参数进行误差补偿。
    27.其中,目标点处的目标位姿是指需要机械臂末端到达目标点处时所具有的位姿;实测位姿是指以目标位姿为机械臂末端位姿的目标,按预设控制程序控制机械臂末端向目标点移动时,机械臂末端最终达到的位姿。目标点的数量可以根据实际需要设置,目标点的目标位姿可根据实际需要设置。例如,目标点的数量可以为30-50。
    28.具体地,目标位姿和实测位姿均包括三个坐标数据和三个姿态角度数据,直接用实测位姿减去对应的目标位姿,即得到第一位姿误差数据。从而,第一位姿误差数据包括三个坐标误差数据和三个姿态角度误差数据。
    29.具体地,结构参数误差包括机械臂的各连杆的长度误差和各关节的转角误差。一组结构参数误差中的长度误差的个数和转角误差的个数取决于机械臂的具体连杆数量和关节数量。
    30.在本实施例中,bp神经网络模型包括输入层、隐含层和输出层,输入层的神经元个数为6,输出层的神经元个数小于或等于机械臂的连杆数量和关节数量之和。其中,隐含层的神经元个数可根据实际需要设置,例如设置为8-10。
    31.优选地,输出层的神经元个数等于机械臂的连杆数量和关节数量之和,从而保证补偿效果最佳。但在实际应用中,可只对部分连杆的长度进行补偿,此时,输出层的神经元个数等于需要进行补偿的连杆的数量和关节数量之和(小于机械臂的连杆数量和关节数量之和),虽然补偿效果有所下降,但可以提高计算效率;其中,可根据实际需要选择需要进行补偿的连杆。
    32.其中,可用各目标点的根据输出数据进行补偿后的理论位姿与实测位姿之差的绝对值平均值作为等效误差,从而,指标为:;
    其中,为指标,为目标点的总个数,为第个目标点的实测位姿,为第个目标点的根据输出数据进行补偿后的理论位姿。
    33.也可直接用当前输入的第一位姿误差数据对应的目标点的根据输出数据进行补偿后的理论位姿与实测位姿之差的绝对值作为等效误差,从而,指标为:;其中, 为当前输入的第一位姿误差数据对应的目标点的根据输出数据进行补偿后的理论位姿,为当前输入的第一位姿误差数据对应的目标点的实测位姿。
    34.在一些优选实施方式中,指标为:;即,等效误差为各目标点的根据输出数据进行补偿后的理论位姿与实测位姿之差的平方的平均值。利用补偿后末端的理论位姿与实测位姿之间的等效误差作为指标,保证连杆长度和关节转角补偿后实现末端定位精度的提高。
    35.其中,根据输出数据进行补偿后的理论位姿,是指根据补偿后的结构参数计算得到的机械臂末端所能达到的位姿。
    36.在本实施例中,见图2,步骤a4包括:a401.初始化输入层到隐含层的权值、隐含层到输出层的权值、输入层到隐含层的阈值和隐含层到输出层的阈值;a402.把一未使用的第一位姿误差数据输入输入层,以计算得到输出数据;a403.计算各目标点的根据输出数据进行补偿后的理论位姿;a404.根据各目标点的理论位姿和实测位姿计算指标;a405.判断指标是否满足要求;a406.若否,则更新输入层到隐含层的权值、隐含层到输出层的权值、输入层到隐含层的阈值和隐含层到输出层的阈值,并返回步骤a402;a407.若是,则结束训练。
    37.其中,步骤a401包括:把输入层到隐含层的权值、隐含层到输出层的权值、输入层到隐含层的阈值和隐含层到输出层的阈值设置为0和1之间的随机数。
    38.即,在设置输入层到隐含层的权值、隐含层到输出层的权值、输入层到隐含层的阈值和隐含层到输出层的阈值的初始值时,分别在0和1之间随机生成一个数值作为初始值。通过该方式设置输入层到隐含层的权值、隐含层到输出层的权值、输入层到隐含层的阈值和隐含层到输出层的阈值的初始值,其优点在于:1、训练bp神经网络时权值和阈值需要先给定一个初始值才能够训练,训练过程中可以逐步进行更新;2、取0-1可以有助于防止权值初始化过大,比较适合当前的激活函数(具体激活函数见下文)。
    39.在实际应用中,初始化输入层到隐含层的权值、隐含层到输出层的权值、输入层到
    隐含层的阈值和隐含层到输出层的阈值的方式不限于此。
    40.其中,未使用的第一位姿误差数据是指在对bp神经网络模型的过程中,没有输入过bp神经网络模型的第一位姿误差数据。在把第一位姿误差数据输入bp神经网络模型时,分别把三个坐标误差数据和三个姿态角度误差数据输入该bp神经网络模型的输入层的6个神经元中。最终,从该bp神经网络模型的输出层的各神经元分别输出各需要进行补偿的连杆的长度误差和各关节的转角误差。
    41.其中,步骤a402包括:由隐含层根据以下公式计算隐含层输出:;其中,为隐含层的第个神经元的隐含层输出,为隐含层的神经元的个数,为输入层的第个神经元到隐含层的第个神经元的权值,为输入层的第个神经元的输入数据, 为输入层的第个神经元到隐含层的第个神经元的阈值,为激活函数,激活函数为:,为自变量;由输出层根据以下公式计算输出数据:;其中,为输出层的第个神经元的输出数据,为隐含层的第个神经元到输出层的第个神经元的权值, 为隐含层的第个神经元到输出层的第个神经元的阈值,为输出层的神经元的数量(其值优选为机械臂的连杆数量和关节数量之和)。
    42.其中,步骤a403包括:获取机械臂末端在各目标点处的实际关节角度数据;根据输出数据对机械臂各连杆的长度和实际关节角度数据进行补偿;根据补偿后的各连杆的长度和补偿后的实际关节角度数据,采用机器人运动学正解算法计算各目标点的理论位姿。
    43.该实际关节角度数据,是通过机器人运动学逆解算法(此为现有技术,此处不对其进行详述),根据目标点处的目标位姿计算得到的。
    44.其中,输出数据即bp神经网络模型输出的结构参数误差,对机械臂各连杆的长度和实际关节角度数据进行补偿时,直接把机械臂控制模型中的各连杆的长度值加上对应的长度误差,并直接把各实际关节角度数据加上对应的转角误差。
    45.其中,机器人运动学正解算法为现有技术,此处不对其进行详述。其中,若bp神经网络模型输出的结构参数误差越准确,则补偿后计算得到的理论位姿越接近对应目标点的实测位姿。
    46.其中,可根据前文中的指标的计算模型进行指标的计算。
    47.在一些实施方式中,步骤a405包括:
    若指标不大于预设的最大期望误差,则判定指标满足要求,否则,判定指标不满足要求。
    48.其中,最大期望误差可根据实际需要设置。
    49.在另一些实施方式中,步骤a405包括:若指标不大于预设的最大期望误差,则判定当前的指标合格,否则判定当前的指标不合格;若指标被连续n次判定为合格,则判定指标满足要求。其中,n为大于1的预设正整数,可根据实际需要设置。
    50.通过这种方式,能够保证指标可靠收敛,提高输出数据的准确性。
    51.具体地,步骤a406包括:根据以下公式更新输入层到隐含层的权值:;其中,为输入层的第个神经元到隐含层的第个神经元的更新后的权值,为输入层的第个神经元到隐含层的第个神经元的权值,为预设的学习率,为隐含层的第个神经元的隐含层输出,为输入层的第个神经元的输入数据,为隐含层的神经元的个数,为指标,为输出层的神经元的数量;根据以下公式更新隐含层到所述输出层的权值:;其中,为隐含层的第个神经元到输出层的第个神经元的更新后的权值,为隐含层的第个神经元到输出层的第个神经元的权值;根据以下公式更新所述输入层到隐含层的阈值:;其中,为输入层的第个神经元到隐含层的第个神经元的更新后的阈值,为输入层的第个神经元到隐含层的第个神经元的阈值;根据以下公式更新隐含层到所述输出层的阈值:;其中,为隐含层的第个神经元到输出层的第个神经元的更新后的阈值,
    为隐含层的第个神经元到输出层的第个神经元的阈值。
    52.需要说明的是,当返回步骤a402开始下一次循环时,在该下一次循环中,输入层到隐含层的权值为更新后的权值,隐含层到输出层的权值为更新后的权值,输入层到隐含层的阈值为更新后的阈值,隐含层到输出层的阈值为更新后的阈值。
    53.上述训练过程,实际上是使用最快下降法对bp神经网络模型进行训练,并通过反向传播来不断调整网络的权值和阈值,使网络的输出误差最小。
    54.请参考图3,本技术提供了一种机械臂结构参数的补偿方法,包括步骤:b1.获取机械臂末端的目标位姿和实测位姿(此处的目标位姿和实测位姿是实际工作时的目标位姿和实测位姿,而非训练过程中的训练样本的目标位姿和实测位姿);b2.计算实测位姿与目标位姿之间的位姿误差数据(两者直接相减得到);b3.把该位姿误差数据输入预先训练好的结构参数补偿模型,得到结构参数补偿模型输出的结构参数误差;结构参数补偿模型为通过前文的机械臂结构参数的补偿模型获取方法获取的结构参数补偿模型;b4.根据结构参数误差对机械臂的结构参数进行补偿。
    55.由于使用通过前文的机械臂结构参数的补偿模型获取方法获取的结构参数补偿模型来进行结构参数误差的提取,得到的结构参数误差可靠性好,能够有效地对机械臂自身结构参数进行误差补偿,提高机械臂末端定位精度。
    56.在本技术所提供的实施例中,应该理解到,所揭露装置和方法,可以通过其它的方式实现。以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,又例如,多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些通信接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
    57.另外,作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,既可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
    58.再者,在本技术各个实施例中的各功能模块可以集成在一起形成一个独立的部分,也可以是各个模块单独存在,也可以两个或两个以上模块集成形成一个独立的部分。
    59.在本文中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。
    60.以上所述仅为本技术的实施例而已,并不用于限制本技术的保护范围,对于本领域的技术人员来说,本技术可以有各种更改和变化。凡在本技术的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本技术的保护范围之内。

    技术特征:
    1.一种机械臂结构参数的补偿模型获取方法,用于获取机械臂的结构参数补偿模型,其特征在于,包括步骤:a1.获取机械臂末端在多个目标点处的目标位姿和实测位姿;a2.根据所述多个目标点的目标位姿和实测位姿,计算得到多个第一位姿误差数据;a3.创建bp神经网络模型;所述bp神经网络模型以所述机械臂末端的第一位姿误差数据为输入,以所述机械臂的结构参数误差为输出数据,并以根据所述输出数据进行补偿后的理论位姿与对应的实测位姿之间的等效误差为指标;a4.利用所述第一位姿误差数据对所述bp神经网络模型进行训练,直到所述指标满足要求。2.根据权利要求1所述的机械臂结构参数的补偿模型获取方法,其特征在于,所述第一位姿误差数据包括三个坐标误差数据和三个姿态角度误差数据;所述结构参数误差包括所述机械臂的各连杆的长度误差和各关节的转角误差;所述bp神经网络模型包括输入层、隐含层和输出层,所述输入层的神经元个数为6,所述输出层的神经元个数小于或等于所述机械臂的连杆数量和关节数量之和。3.根据权利要求2所述的机械臂结构参数的补偿模型获取方法,其特征在于,所述指标为:;其中,为所述指标,为所述目标点的总个数,为第个所述目标点的实测位姿,为第个所述目标点的根据所述输出数据进行补偿后的理论位姿。4.根据权利要求2所述的机械臂结构参数的补偿模型获取方法,其特征在于,步骤a4包括:a401.初始化所述输入层到所述隐含层的权值、所述隐含层到所述输出层的权值、所述输入层到所述隐含层的阈值和所述隐含层到所述输出层的阈值;a402.把一未使用的所述第一位姿误差数据输入所述输入层,以计算得到所述输出数据;a403.计算各所述目标点的根据所述输出数据进行补偿后的理论位姿;a404.根据各所述目标点的所述理论位姿和所述实测位姿计算所述指标;a405.判断所述指标是否满足要求;a406.若否,则更新所述输入层到所述隐含层的权值、所述隐含层到所述输出层的权值、所述输入层到所述隐含层的阈值和所述隐含层到所述输出层的阈值,并返回步骤a402;a407.若是,则结束训练。5.根据权利要求4所述的机械臂结构参数的补偿模型获取方法,其特征在于,步骤a401包括:把所述输入层到所述隐含层的权值、所述隐含层到所述输出层的权值、所述输入层到所述隐含层的阈值和所述隐含层到所述输出层的阈值设置为0和1之间的随机数。6.根据权利要求4所述的机械臂结构参数的补偿模型获取方法,其特征在于,步骤a402
    包括:由所述隐含层根据以下公式计算隐含层输出:;其中,为所述隐含层的第个神经元的所述隐含层输出,为所述隐含层的神经元的个数,为所述输入层的第个神经元到所述隐含层的第个神经元的权值,为所述输入层的第个神经元的输入数据,为所述输入层的第个神经元到所述隐含层的第个神经元的阈值,为激活函数,所述激活函数为:,为自变量;由所述输出层根据以下公式计算所述输出数据:;其中,为所述输出层的第个神经元的所述输出数据,为所述隐含层的第个神经元到所述输出层的第个神经元的权值,为所述隐含层的第个神经元到所述输出层的第个神经元的阈值,为输出层的神经元的数量。7.根据权利要求4所述的机械臂结构参数的补偿模型获取方法,其特征在于,步骤a403包括:获取所述机械臂末端在各所述目标点处的实际关节角度数据;根据所述输出数据对所述机械臂各连杆的长度和所述实际关节角度数据进行补偿;根据补偿后的各连杆的长度和补偿后的实际关节角度数据,采用机器人运动学正解算法计算各所述目标点的所述理论位姿。8.根据权利要求4所述的机械臂结构参数的补偿模型获取方法,其特征在于,步骤a405包括:若所述指标不大于预设的最大期望误差,则判定所述指标满足要求,否则,判定所述指标不满足要求。9.根据权利要求4所述的机械臂结构参数的补偿模型获取方法,其特征在于,步骤a406包括:根据以下公式更新所述输入层到所述隐含层的权值:;其中,为所述输入层的第个神经元到所述隐含层的第个神经元的更新后的权值,为所述输入层的第个神经元到所述隐含层的第个神经元的权值,为预设的
    学习率,为所述隐含层的第个神经元的隐含层输出,为所述输入层的第个神经元的输入数据,为所述隐含层的神经元的个数,为所述指标,为输出层的神经元的数量;根据以下公式更新所述隐含层到所述输出层的权值:;其中,为所述隐含层的第个神经元到所述输出层的第个神经元的更新后的权值,为所述隐含层的第个神经元到所述输出层的第个神经元的权值;根据以下公式更新所述输入层到所述隐含层的阈值:;其中,为所述输入层的第个神经元到所述隐含层的第个神经元的更新后的阈值,为所述输入层的第个神经元到所述隐含层的第个神经元的阈值;根据以下公式更新所述隐含层到所述输出层的阈值:;其中,为所述隐含层的第个神经元到所述输出层的第个神经元的更新后的阈值,为所述隐含层的第个神经元到所述输出层的第个神经元的阈值。10.一种机械臂结构参数的补偿方法,其特征在于,包括步骤:获取机械臂末端的目标位姿和实测位姿;计算所述实测位姿与所述目标位姿之间的位姿误差数据;把所述位姿误差数据输入预先训练好的结构参数补偿模型,得到所述结构参数补偿模型输出的结构参数误差;所述结构参数补偿模型为通过权利要求1-9任一项所述的机械臂结构参数的补偿模型获取方法获取的结构参数补偿模型;根据所述结构参数误差对所述机械臂的结构参数进行补偿。

    技术总结
    本申请属于机械臂控制技术领域,公开了一种机械臂结构参数的补偿模型获取方法和补偿方法,通过获取机械臂末端在多个目标点处的目标位姿和实测位姿;根据这些目标位姿和实测位姿,计算得到多个第一位姿误差数据;创建BP神经网络模型;BP神经网络模型以机械臂末端的第一位姿误差数据为输入,以机械臂的结构参数误差为输出数据,并以根据输出数据进行补偿后的理论位姿与对应的实测位姿之间的等效误差为指标;利用第一位姿误差数据对BP神经网络模型进行训练,直到指标满足要求;从而,可得到可靠的结构参数补偿模型,使用该结构参数补偿模型可得到可靠的结构参数误差,能够有效地对机械臂自身结构参数进行误差补偿,提高机械臂末端定位精度。定位精度。定位精度。


    技术研发人员:康信勇 范朝龙 袁悦 范黎
    受保护的技术使用者:季华实验室
    技术研发日:2022.04.24
    技术公布日:2022/5/25
    转载请注明原文地址:https://tc.8miu.com/read-6871.html

    最新回复(0)