柔性太阳电池组件及其制备方法

    专利查询2022-08-13  138



    1.本发明属于太阳电池技术领域,具体涉及一种柔性太阳电池组件及其制备方法。


    背景技术:

    2.太阳能电池是可以有效地将太阳能转换成电能的装置,柔性太阳电池区别于玻璃太阳能电池组件,轻、薄、柔是它的亮点。常见的光伏组件封装有刚性封装和柔性封装两种,刚性封装主要是采用玻璃封装材料,而柔性光伏封装主要采用柔性聚合物封装材料。柔性组件有可弯曲、质量轻、适应环境多样等特点,在光伏建筑一体化、智能穿戴、智能汽车、无人机等领域有较大的应用需求。柔性封装技术方案大多数针对钙钛矿太阳电池和铜铟镓硒太阳电池,对不同材料类型的太阳电池需要不同的封装方案。除了刚性封装方案,目前柔性封装方案有原子层沉积镀膜和旋涂保护膜以及层压胶膜等。封装前还需要对太阳电池进行切割、焊接引线,其中有些封装方案中引线方案是胶带粘贴或者导电浆料粘贴。
    3.上述封装方案具有以下缺点:
    4.1.玻璃封装不适合柔性太阳电池组件,这使得太阳电池失去轻柔的特性,重量面密度难以降低;
    5.2.原子层沉积镀膜耗时长且复杂,镀膜材料的水汽透过率对沉积设备有较高的技术要求,成本较高;
    6.3.手动涂覆银浆或者导电浆料影响美观,涂覆面积大小难以控制,难以实现自动化。
    7.因此,针对上述技术问题,有必要提供一种柔性太阳电池组件及其制备方法。


    技术实现要素:

    8.有鉴于此,本发明的目的在于提供一种柔性太阳电池组件及其制备方法。
    9.为了实现上述目的,本发明一实施例提供的技术方案如下:
    10.一种柔性太阳电池组件,所述柔性太阳电池组件包括若干柔性太阳电池单元,每个柔性太阳电池单元包括:
    11.柔性太阳电池,包括相对设置的第一表面和第二表面,第一表面上形成有若干金属电极,所述金属电极与柔性太阳电池欧姆接触,且金属电极上焊接有若干焊带;
    12.热熔封装胶层,包括封装于第一表面上的第一热熔封装胶层和封装于第二表面上的第二热熔封装胶层;
    13.封装层,封装于第一热熔封装胶层上方;
    14.封装衬底,位于第二热熔封装胶层下方。
    15.一实施例中,所述第一热熔封装胶层和/或第二热熔封装胶层为eva薄膜或poe薄膜;和/或,
    16.所述第一热熔封装胶层和/或第二热熔封装胶层的厚度为0.2mm~0.5mm;
    17.所述封装衬底为etfe薄膜或pi薄膜;和/或,
    18.所述封装衬底的厚度为5μm~25μm;和/或,
    19.所述封装层为etfe薄膜;和/或,
    20.所述封装层的厚度为10μm~50μm;和/或,
    21.所述焊带为银焊带;和/或,
    22.所述焊带的厚度为0.01mm~0.1mm。
    23.一实施例中,所述柔性太阳电池为具有不同光吸收波段的柔性多结太阳电池。
    24.一实施例中,所述柔性多结太阳电池为柔性两结gainp/gaas太阳电池或柔性三结algainp/gaas/ingaas太阳电池。
    25.一实施例中,所述柔性太阳电池组件包括多个串联的柔性太阳电池单元,相邻的柔性太阳电池单元通过焊带电性连接。
    26.本发明另一实施例提供的技术方案如下:
    27.一种柔性太阳电池组件的制备方法,所述制备方法包括:
    28.s1、制备柔性太阳电池阵列,并在第一表面上形成若干金属电极;
    29.s2、切割形成多个柔性太阳电池;
    30.s3、基于电阻焊工艺,在相邻柔性太阳电池的金属电极间焊接焊带,得到多个串联的柔性太阳电池;
    31.s4、基于层压工艺,在层压机中从下往上依次铺设封装衬底、第二热熔封装胶层、串联的柔性太阳电池、第一热熔封装胶层及封装层,并在顶部放置固定模具,层压形成柔性太阳电池组件。
    32.一实施例中,所述步骤s2中采用disco硬刀刀片进行切割,刀片转速为10krpm~50k rpm,切割速度为1mm/s~10mm/s。
    33.一实施例中,所述步骤s3中,
    34.电阻焊工艺中采用的焊头为并行的两个焊头或一个尖端连体型焊头,焊头截面面积小于金属电极的面积;和/或,
    35.电阻焊工艺中采用的焊接电源是电流控制型电源或电压控制型电源,电流控制型电源的工作电流为105a~125a,焊接时间为5ms~15ms,电压控制型电源的工作电压为1.00v~1.25v,焊接时间为15ms~20ms;和/或,
    36.电阻焊工艺之前还包括:采用绝缘材料对柔性太阳电池的侧壁进行保护,以防止电阻焊工艺中焊点的偏移。
    37.一实施例中,所述步骤s4中,
    38.层压工艺层中压温度为120℃~145℃,层压时间为5min~15min,层压机包括上腔室和下腔室,上腔室与下腔室的压差为60kpa~90kpa;和/或,
    39.固定模具为玻璃板,玻璃板上形成有花纹以限制封装层受热膨胀变形。
    40.一实施例中,所述第一热熔封装胶层和/或第二热熔封装胶层为eva薄膜或poe薄膜;和/或,
    41.所述第一热熔封装胶层和/或第二热熔封装胶层的厚度为0.2mm~0.5mm;
    42.所述封装衬底为etfe薄膜或pi薄膜;和/或,
    43.所述封装衬底的厚度为5μm~25μm;和/或,
    44.所述封装层为etfe薄膜;和/或,
    45.所述封装层的厚度为10μm~50μm;和/或,
    46.所述焊带为银焊带;和/或,
    47.所述焊带的厚度为0.01mm~0.1mm;和/或,
    48.所述柔性太阳电池为具有不同光吸收波段的柔性多结太阳电池。
    49.本发明具有以下有益效果:
    50.本发明的柔性太阳电池组件及其制备方法基于电阻焊和层压技术,可在柔性太阳电池工艺的基础上实现一系列电池的切割、焊接和层压而获得柔性太阳电池组件;
    51.本发明不损伤电池外延材料质量,延续了多结太阳电池的轻薄性,保证了柔性太阳电池组件重量面密度的要求,整个工艺可实现自动化及产业化。
    附图说明
    52.为了更清楚地说明本技术实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本技术中记载的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
    53.图1为本发明一具体实施例中柔性太阳电池单元的侧面结构示意图;
    54.图2为本发明一具体实施例中柔性太阳电池组件的正面结构示意图;
    55.图3为本发明一具体实施例中柔性太阳电池组件制备方法的工艺流程图。
    具体实施方式
    56.为了使本技术领域的人员更好地理解本发明中的技术方案,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都应当属于本发明保护的范围。
    57.本发明公开了一种柔性太阳电池组件,包括若干柔性太阳电池单元,每个柔性太阳电池单元包括:
    58.柔性太阳电池,包括相对设置的第一表面和第二表面,第一表面上形成有若干金属电极,金属电极与柔性太阳电池欧姆接触,且金属电极上焊接有若干焊带;
    59.热熔封装胶层,包括封装于第一表面上的第一热熔封装胶层和封装于第二表面上的第二热熔封装胶层;
    60.封装层,封装于第一热熔封装胶层上方;
    61.封装衬底,位于第二热熔封装胶层下方。
    62.本发明还公开了一种柔性太阳电池组件的制备方法,包括:
    63.s1、制备柔性太阳电池阵列,并在第一表面上形成若干金属电极;
    64.s2、切割形成多个柔性太阳电池;
    65.s3、基于电阻焊工艺,在相邻柔性太阳电池的金属电极间焊接焊带,得到多个串联的柔性太阳电池;
    66.s4、基于层压工艺,在层压机中从下往上依次铺设封装衬底、第二热熔封装胶层、
    串联的柔性太阳电池、第一热熔封装胶层及封装层,并在顶部放置固定模具,层压形成柔性太阳电池组件。
    67.以下结合具体实施例对本发明作进一步说明。
    68.参图1、图2所示,本发明一具体实施例中的柔性太阳电池组件包括若干柔性太阳电池单元,每个柔性太阳电池单元包括:
    69.柔性太阳电池1,包括相对设置的第一表面(上表面)和第二表面(下表面),第一表面上形成有若干金属电极11,金属电极11与柔性太阳电池欧姆接触,且金属电极11上焊接有若干焊带2;
    70.热熔封装胶层,包括封装于第一表面上的第一热熔封装胶层31和封装于第二表面上的第二热熔封装胶层32;
    71.封装层4,封装于第一热熔封装胶层上方;
    72.封装衬底5,位于第二热熔封装胶层下方。
    73.具体地,本实施例中的柔性太阳电池1为具有不同光吸收波段的柔性多结太阳电池,可以为两结、三结、四结或更多结的器件。尤为优选的,柔性多结太阳电池为柔性两结gainp/gaas太阳电池或柔性三结algainp/gaas/ingaas太阳电池。电池之间通过隧道结连接,柔性多结太阳电池是倒置生长在临时衬底上,再经过电镀金属和低温胶或者uv胶键合工艺方案制备而得。
    74.金属电极11作为电池的正面电极,其材料为金属或金属合金,金属电极11与柔性太阳电池1形成良好的欧姆接触。
    75.焊带2为银焊带,焊接于金属电极11上,焊带的厚度为0.01mm~0.1mm,优选地,本实施例中焊带2的厚度为0.02mm。
    76.第一热熔封装胶层31和第二热熔封装胶层32为eva(乙烯-醋酸乙烯共聚物)薄膜或poe(聚乙烯辛烯共弹性体)薄膜,厚度为0.2mm~0.5mm。
    77.封装层4为具有高透光性的etfe(乙烯-四氟乙烯共聚物)薄膜,厚度为10μm~50μm,本实施例中etfe薄膜的透光性大于95%,厚度为25μm,且etfe薄膜经过预处理后与第一热熔封装胶层31的粘性更强。
    78.封装衬底5为etfe(乙烯-四氟乙烯共聚物)薄膜或pi(聚酰亚胺)薄膜,厚度为5μm~25μm。
    79.优选地,本实施例中的柔性太阳电池组件包括多个串联的柔性太阳电池单元,相邻的柔性太阳电池单元通过焊带电性连接。具体地,金属电极11包括正极和负极,柔性太阳电池单元中的正极通过焊带与前一个(或后一个)柔性太阳电池单元的负极电性连接,柔性太阳电池单元中的负极通过焊带与后一个(或前一个)柔性太阳电池单元的正极电性连接,从而实现柔性太阳电池单元的串联。
    80.参图3所示,本实施例中柔性太阳电池组件的制备方法,包括以下步骤:
    81.s1、制备柔性太阳电池阵列,并在第一表面上形成若干金属电极。
    82.利用临时衬底与腐蚀技术制备多结太阳电池,并蒸镀金属或金属合金作为金属电极。
    83.s2、切割形成多个柔性太阳电池。
    84.采用disco硬刀刀片进行切割,刀片转速为10k rpm~50k rpm,切割速度为1mm/s
    ~10mm/s,优选地,本实施例中刀片转速30k rpm,切割速度为5mm/s。
    85.s3、基于电阻焊工艺,在相邻柔性太阳电池的金属电极间焊接焊带,得到多个串联的柔性太阳电池。
    86.电阻焊工艺中采用的焊头为并行的两个焊头或一个尖端连体型焊头,焊头截面面积小于金属电极的面积。优选地,先使用真空吸盘将柔性太阳电池吸平再进行焊带的焊接。
    87.电阻焊工艺中采用的焊接电源是电流控制型电源或电压控制型电源,电流控制型电源的工作电流为105a~125a,焊接时间5ms~15ms,优选为10ms,电压控制型电源的工作电压为1.00v~1.25v,焊接时间15ms~20ms。
    88.进一步地,电阻焊工艺之前还包括:
    89.采用绝缘材料对柔性太阳电池的侧壁进行保护,以防止电阻焊工艺中焊点的偏移,绝缘材料可以采用pi胶或pi胶带等。
    90.焊带为银焊带,厚度为0.01mm~0.1mm,优选地,本实施例中焊带的厚度为0.02mm。
    91.电阻焊工艺中,焊接可以使用手工锡焊,或者使用银浆等其他导电浆料人工手动涂覆焊带直接粘贴,凡是能将焊带电连接到金属电极上的技术方案均属于本发明所保护的范围。
    92.s4、基于层压工艺,在层压机中从下往上依次铺设封装衬底、第二热熔封装胶层、串联的柔性太阳电池、第一热熔封装胶层及封装层,并在顶部放置固定模具,层压形成柔性太阳电池组件。
    93.层压工艺层中压温度为120℃~145℃,层压时间为5min~15min,层压机包括上腔室和下腔室,上腔室与下腔室的压差为60kpa~90kpa。
    94.固定模具为玻璃板,玻璃板上形成有特定花纹以限制封装层受热膨胀变形。
    95.封装衬底、第二热熔封装胶层、第一热熔封装胶层及封装层的材料及厚度如上述参数,此处不再进行赘述。
    96.由以上技术方案可以看出,本发明具有以下优点:
    97.本发明的柔性太阳电池组件及其制备方法基于电阻焊和层压技术,可在柔性太阳电池工艺的基础上实现一系列电池的切割、焊接和层压而获得柔性太阳电池组件;
    98.本发明不损伤电池外延材料质量,延续了多结太阳电池的轻薄性,保证了柔性太阳电池组件重量面密度的要求,整个工艺可实现自动化及产业化。
    99.对于本领域技术人员而言,显然本发明不限于上述示范性实施例的细节,而且在不背离本发明的精神或基本特征的情况下,能够以其他的具体形式实现本发明。因此,无论从哪一点来看,均应将实施例看作是示范性的,而且是非限制性的,本发明的范围由所附权利要求而不是上述说明限定,因此旨在将落在权利要求的等同要件的含义和范围内的所有变化囊括在本发明内。不应将权利要求中的任何附图标记视为限制所涉及的权利要求。
    100.此外,应当理解,虽然本说明书按照实施方式加以描述,但并非每个实施方式仅包含一个独立的技术方案,说明书的这种叙述方式仅仅是为清楚起见,本领域技术人员应当将说明书作为一个整体,各实施例中的技术方案也可以经适当组合,形成本领域技术人员可以理解的其他实施方式。

    技术特征:
    1.一种柔性太阳电池组件,其特征在于,所述柔性太阳电池组件包括若干柔性太阳电池单元,每个柔性太阳电池单元包括:柔性太阳电池,包括相对设置的第一表面和第二表面,第一表面上形成有若干金属电极,所述金属电极与柔性太阳电池欧姆接触,且金属电极上焊接有若干焊带;热熔封装胶层,包括封装于第一表面上的第一热熔封装胶层和封装于第二表面上的第二热熔封装胶层;封装层,封装于第一热熔封装胶层上方;封装衬底,位于第二热熔封装胶层下方。2.根据权利要求1所述的柔性太阳电池组件,其特征在于,所述第一热熔封装胶层和/或第二热熔封装胶层为eva薄膜或poe薄膜;和/或,所述第一热熔封装胶层和/或第二热熔封装胶层的厚度为0.2mm~0.5mm;所述封装衬底为etfe薄膜或pi薄膜;和/或,所述封装衬底的厚度为5μm~25μm;和/或,所述封装层为etfe薄膜;和/或,所述封装层的厚度为10μm~50μm;和/或,所述焊带为银焊带;和/或,所述焊带的厚度为0.01mm~0.1mm。3.根据权利要求1所述的柔性太阳电池组件,其特征在于,所述柔性太阳电池为具有不同光吸收波段的柔性多结太阳电池。4.根据权利要求3所述的柔性太阳电池组件,其特征在于,所述柔性多结太阳电池为柔性两结gainp/gaas太阳电池或柔性三结algainp/gaas/ingaas太阳电池。5.根据权利要求1所述的柔性太阳电池组件,其特征在于,所述柔性太阳电池组件包括多个串联的柔性太阳电池单元,相邻的柔性太阳电池单元通过焊带电性连接。6.一种柔性太阳电池组件的制备方法,其特征在于,所述制备方法包括:s1、制备柔性太阳电池阵列,并在第一表面上形成若干金属电极;s2、切割形成多个柔性太阳电池;s3、基于电阻焊工艺,在相邻柔性太阳电池的金属电极间焊接焊带,得到多个串联的柔性太阳电池;s4、基于层压工艺,在层压机中从下往上依次铺设封装衬底、第二热熔封装胶层、串联的柔性太阳电池、第一热熔封装胶层及封装层,并在顶部放置固定模具,层压形成柔性太阳电池组件。7.根据权利要求6所述的制备方法,其特征在于,所述步骤s2中采用disco硬刀刀片进行切割,刀片转速为10k rpm~50k rpm,切割速度为1mm/s~10mm/s。8.根据权利要求6所述的制备方法,其特征在于,所述步骤s3中,电阻焊工艺中采用的焊头为并行的两个焊头或一个尖端连体型焊头,焊头截面面积小于金属电极的面积;和/或,电阻焊工艺中采用的焊接电源是电流控制型电源或电压控制型电源,电流控制型电源的工作电流为105a~125a,焊接时间为5ms~15ms,电压控制型电源的工作电压为1.00v~1.25v,焊接时间为15ms~20ms;和/或,
    电阻焊工艺之前还包括:采用绝缘材料对柔性太阳电池的侧壁进行保护,以防止电阻焊工艺中焊点的偏移。9.根据权利要求6所述的制备方法,其特征在于,所述步骤s4中,层压工艺层中压温度为120℃~145℃,层压时间为5min~15min,层压机包括上腔室和下腔室,上腔室与下腔室的压差为60kpa~90kpa;和/或,固定模具为玻璃板,玻璃板上形成有花纹以限制封装层受热膨胀变形。10.根据权利要求6所述的制备方法,其特征在于,所述第一热熔封装胶层和/或第二热熔封装胶层为eva薄膜或poe薄膜;和/或,所述第一热熔封装胶层和/或第二热熔封装胶层的厚度为0.2mm~0.5mm;所述封装衬底为etfe薄膜或pi薄膜;和/或,所述封装衬底的厚度为5μm~25μm;和/或,所述封装层为etfe薄膜;和/或,所述封装层的厚度为10μm~50μm;和/或,所述焊带为银焊带;和/或,所述焊带的厚度为0.01mm~0.1mm;和/或,所述柔性太阳电池为具有不同光吸收波段的柔性多结太阳电池。

    技术总结
    本发明揭示了一种柔性太阳电池组件及其制备方法,所述柔性太阳电池组件包括若干柔性太阳电池单元,每个柔性太阳电池单元包括:柔性太阳电池,包括相对设置的第一表面和第二表面,第一表面上形成有若干金属电极,所述金属电极与柔性太阳电池欧姆接触,且金属电极上焊接有若干焊带;热熔封装胶层,包括封装于第一表面上的第一热熔封装胶层和封装于第二表面上的第二热熔封装胶层;封装层,封装于第一热熔封装胶层上方;封装衬底,位于第二热熔封装胶层下方。本发明不损伤电池外延材料质量,延续了多结太阳电池的轻薄性,保证了柔性太阳电池组件重量面密度的要求,整个工艺可实现自动化及产业化。化及产业化。化及产业化。


    技术研发人员:宣静静 陆书龙 张怡 龙军华 孙强健 王霞 陈志韬 吴晓旭
    受保护的技术使用者:中国科学院苏州纳米技术与纳米仿生研究所
    技术研发日:2022.02.18
    技术公布日:2022/5/25
    转载请注明原文地址:https://tc.8miu.com/read-7248.html

    最新回复(0)