1.本发明属于有机光电信息材料与器件领域,更具体地说,涉及一类新型不对称紫精化合物及其制备方法和应用。
背景技术:
2.在电化学刺激下趋于可逆地改变颜色的材料称为电致变色材料,这种现象称为电致变色(ec)。这些材料已被广泛用于防眩后视镜或低功耗显示器的电致变色器件(ecd)中。电致变色(ec)材料可以大致分为两大类,即无机材料和有机材料。无机材料包括过渡金属和金属氧化物、普鲁士蓝系、镧系配合物等。有机材料包括紫精衍生物(1,1
′‑
二烷基4,4
′‑
双吡啶鎓)、ttf(四硫富瓦烯)衍生物、tcnq(四氰基喹啉二甲烷)衍生物、醌、导电聚合物,其中导电聚合物包括聚噻吩(pth)、聚苯胺(pani)、聚吡咯(ppy)。这些材料最重要的特性是它们在低电压驱动下,氧化/还原状态之间可以显示颜色变化。此外,ec材料的化学结构设计在确定其不同波长下的光吸收能力方面起着至关重要的作用,使其成为低功率应用的良好候选者。
3.在这些类别的材料中,有机电致变色材料因其光学性能较好、色彩丰富、颜色转换快、循环可逆性好、结构易于修饰、成本低廉而受到广泛的青睐。其中有机小分子紫精化学结构容易修饰、氧化还原态比较丰富、而且紫精具有良好的氧化还原可逆性和优异的电子接受能力。因此,这类材料也被广泛用于节能智能窗户和储能设备等应用领域。而之前报道过将很多吸电子基团引入紫精,发现吸电子基团增强了紫精的缺电子性,降低了电致变色器件的动力学稳定性。因此需要通过将不同富电子给体基团引入紫精,利用电子给体和电子受体单元之间的电子转移,增强了紫精化合物结构的稳定性;以这种紫精化合物作为电致变色活性材料可以开发出大面积且颜色丰富变化的电致变色器件,并进一步可实现其在智能窗中的应用。
技术实现要素:
4.为了进一步改善紫精化合物在智能窗等电致变色材料中的应用,实现更低电压下实现多颜色可逆的变化,本发明提供一类新型不对称紫精化合物及其制备方法与应用。
5.为了实现上述目的,本发明采用以下技术方案:
6.本发明的新型不对称紫精化合物是将三联吡啶化合物引入到4,4'-联吡啶上,然后通过离子交换从而得到具有不同抗衡阴离子的紫精化合物,利用给体三联吡啶的富电子特性和受体4,4'-联吡啶的缺电子特性形成了类似d-a结构增强了紫精化合物的稳定性,且这类新型不对称紫精化合物具有良好的可逆氧化还原性;在电刺激作用下,这类新型不对称紫精化合物发生可逆的氧化还原反应并伴随着颜色变化,以此类新型不对称紫精化合物为活性材料,掺杂合适的电解质进而制成颜色变化明显的电致变色器件。通过器件优化,能制成低电压下颜色变化丰富且循环稳定好的大面积电致变色器件,进而实现其在智能窗中的应用。
7.本发明公开的一类新型不对称紫精化合物为tpy-vio-x-,结构通式如下所示:
[0008][0009]
其中,
[0010]
x
1-为i-、cl-、tfsi-、pf
6-、br-、clo
4-或bf
4-中的任意一个;
[0011]
x
2-为i-、cl-、tfsi-、pf
6-、br-、clo
4-或bf
4-中的任意一个;
[0012]
n为0或1;
[0013]
r可独立地选自具有正整数个碳原子的支链、直链、环状醚链或环状烷基链。
[0014]
所述的新型不对称紫精化合物的合成路线分为n=0和n=1两种不同产物的路径,n=0时,这类新型不对称紫精化合物产物标记为tpy-vio-1-x-;n=1时,这类新型不对称紫精化合物产物标记为tpy-vio-2-x-。
[0015]
所述tpy-vio-1-x-和所述tpy-vio-2-x-合成路线如下,其中x包括x1和x2:
[0016]
所述的新型不对称紫精化合物具体合成步骤为:
[0017]
(1)化合物5的制备:4,4'-联吡啶和1-氯-2,4-二硝基苯在乙腈、乙醇或丙酮溶剂中回流反应72h以内,冷却至室温,过滤后,将滤液旋干,先用丙酮洗涤2次,再用乙醚洗涤2次,然后真空干燥得化合物5;
[0018]
(2)化合物3的制备:将化合物1在甲醇中溶解,之后加入化合物2,然后加入相应的
15%的氢氧化钾水溶液,加入相应的氨水,在10~30℃下搅拌3天以内;过滤得滤饼,用醇和去离子水分别洗涤3次,然后用二氯甲烷将滤饼完全溶解,然后用饱和碳酸氢钠水溶液萃取,浓缩至二氯甲烷刚好溶解,加入大量甲醇或乙醇沉降。过滤得滤饼,用甲醇或者乙醇洗涤三次,真空干燥得化合物3;
[0019]
(3)化合物4的制备:化合物3,质量分数为10%的钯碳,10ml的水合肼在乙醇中回流搅拌24h;冷却至室温,过滤除去钯碳,旋蒸除去溶剂得化合物4;
[0020]
(4)化合物6的制备:化合物4和化合物5在醇和去离子水的混合溶剂中回流反应48~84h;冷却至室温,旋蒸除去溶剂,加入少量的良性溶剂将固体完全溶解,再加入大量的不良溶剂沉降得化合物6;
[0021]
(5)化合物tpy-vio-1-x-的制备:化合物6在氮气氛围下分别与卤代物在dmso、乙腈、dmf、醇等溶剂中在30~45℃条件下反应12~24h;反应结束后,旋干除去溶剂;用良性溶剂溶解固体,加入高氯酸盐、氟磷酸盐、卤代盐、四氟硼酸盐或双(三氟甲磺酰)亚胺盐室温搅拌5~24h;反应结束后,过滤,重结晶得化合物tpy-vio-1-x-;
[0022]
(6)化合物9的制备:四(三苯基膦)钯做催化剂,化合物7和化合物8溶于甲苯溶剂,氮气条件下回流12~36h以内;冷却至室温,加入饱和氯化钠水溶液萃取,将有机溶剂用无水硫酸钠干燥,旋蒸除去溶剂得化合物9;
[0023]
(7)化合物10的制备:化合物9,10ml的水合肼,质量分数为10%的钯碳在乙醇中回流搅拌24h;冷却至室温,过滤除去钯碳,旋蒸除去溶剂得化合物10;
[0024]
(8)化合物11的制备:化合物10和化合物5在醇和去离子水的混合溶剂中回流反应48~84h;冷却至室温,旋蒸除去溶剂,加入少量的良性溶剂将固体完全溶解,再加入大量不良溶剂沉降得化合物11;
[0025]
(9)化合物tpy-vio-2-x-的制备:化合物11在氮气氛围下分别与卤代物在dmso、乙腈、dmf、醇等溶剂中于30~45℃条件下反应12~24h;反应结束后,旋干除去溶剂;用良性溶剂溶解固体,加入高氯酸盐、氟磷酸盐、卤代盐、四氟硼酸盐或双(三氟甲磺酰)亚胺盐室温搅拌5~24h;反应结束后,过滤,重结晶得化合物tpy-vio-2-x-。
[0026]
以此类新型不对称型紫精化合物tpy-vio-1-x-或tpy-vio-2-x-为电活性材料,在合适的溶剂(dmf、乙腈、dmso、丙酮)中掺杂合适的电解质(咪唑盐、锂盐)制成电致变色溶液,然后制备电致变色器件。
[0027]
本发明提供的一类新型不对称紫精化合物,由于其氧化还原态丰富,电子接受能力良好且取代基容易改变等优点,所以紫精的结构可以多样化,进一步实现多色性和多功能性。
[0028]
本发明所述的一类新型不对称紫精化合物通过引入金属,与其偶联后可以制成既具有电致变色又具有电致变色发光的材料,得到双功能器件。
[0029]
本发明所述的一类新型不对称紫精化合物,可作为颜色指示剂,与储能器件相连,用可以直接观察到其充放电状态。
[0030]
本发明所述的一类新型不对称紫精化合物,可以利用其缺电子特性以及可逆氧化还原特性,从而被用作制备有机液流电池。
[0031]
本发明所述的一类新型不对称紫精化合物,利用所述不对称紫精化合物的易接受电子特性,从而被用作超级电容器。
[0032]
本发明所述的一类新型不对称紫精化合物,利用所述不对称紫精化合物的内部可发生可逆电子转移反应,从而被用作电子转移催化剂。
[0033]
本发明所述的一类新型不对称紫精化合物,可以利用将金属与所述不对称紫精化合物的三联吡啶部分偶联来修饰金属,从而被用作抑制微生物影响的腐蚀。
[0034]
本发明所述的一类新型不对称紫精化合物,可以利用紫精理想的电子接受能力和良好的氧化还原行为,从而被用作储能装置中。
[0035]
本发明的有益效果是:将三联吡啶化合物引入4,4'-联吡啶上,再通过离子交换得到具有不同抗衡阴离子的新型非对称紫精化合物,这类新型不对称紫精化合物具有优异的电化学和光物理性质,以这类新型不对称紫精化合物为电活性材料,掺杂合适的电解质制备成电致变色器件;在电刺激的作用下,发生氧化还原可逆反应,器件的颜色发生了明显且丰富的变化。本发明涉及的新型不对称紫精化合物合成步骤简单,具有多个氧化还原态,施加低电压即可实现颜色变化。通过器件优化,能制成颜色变化丰富且循环稳定好的大面积电致变色器件,进而实现其在智能窗中的应用。
附图说明
[0036]
图1a为实施例2中tpy-vio-1-x-(x1=cl,x2=i)的循环伏安图负级氧化峰;
[0037]
图1b为实施例2中tpy-vio-1-x-(x1=cl,x2=i)的循环伏安图正极氧化峰;
[0038]
图2为实施例3中用tpy-vio-1-x-(x1=cl,x2=i)制成器件在工作电压下的电致变色图;
[0039]
图3a为实施例4中用tpy-vio-1-x-(x1=cl,x2=i)制成的器件在施加负压下的吸收光谱图;
[0040]
图3b为实施例4中用tpy-vio-1-x-(x1=cl,x2=i)制成的器件在持续施加一段时间后电压的吸收光谱图;
[0041]
图4为实施例5中用tpy-vio-1-x-(x1=cl,x2=i)制成的器件在施加负压下的透过率变化图;
[0042]
图5为实施例6中用tpy-vio-1-x-(x1=cl,x2=i)制成的器件在施加负压下的电流消耗图;
[0043]
图6为实施例7中用tpy-vio-1-x-(x1=cl,x2=i)制成的器件在施加负压下的循环稳定性测试。
具体实施方式
[0044]
下面对本发明的实施例作详细说明,本实施例在以本发明技术方案为前提下进行实施,给出了详细的实施方式和具体的操作过程,但本发明的保护范围不限于下述的实例。
[0045]
化合物tpy-vio-1-x-和tpy-vio-2-x-具有相似的性质,具有多个氧化还原态,良好的氧化还原可逆性,对低电压响应灵敏,且具有相似的合成步骤、相似的光物理特性,下面以tpy-vio-1-x-(x1=cl,x2=i)为例进行详细说明。
[0046]
实施例1:tpy-vio-1-x-(x1=cl,x2=i)的制备
[0047][0048]
(1)化合物5的制备:1-氯-2,4-二硝基苯(300mg,1.49mmol)和4,4'-联吡啶(348mg,2.20mmol)和在无水乙腈中回流反应48h,反应结束后,冷却至室温,过滤,将滤液旋干并用丙酮和乙醚洗涤3次,然后过滤并真空干燥得化合物5。产率:70%。
[0049]1h nmr(400mhz,d2o)δ(ppm):9.30(d,j=2.5hz,1h),9.16(d,j=7.1hz,2h),8.84(dd,j=8.7,2.5hz,1h),8.76-8.73(m,2h),8.59(d,j=7.1hz,2h),8.18(d,j=8.7hz,1h),7.95-7.91(m,2h)。
[0050]
(2)化合物3的制备:化合物1(500mg,3.31mmol)在甲醇中完全溶解,然后加入化合物2(800mg,6.62mmol),加入15%koh的水溶液15ml,加入15ml氨水在25℃下搅拌3天;反应结束后,出现大量黑色固体,真空过滤收集沉淀,并用甲醇和水各冲洗3次,然后用二氯甲烷溶解,将其转移到分液漏斗中,加入饱和碳酸氢钠水溶液洗两次,将有机层转移到锥形瓶用无水硫酸钠干燥,浓缩至刚好溶解加入大量甲醇静置析出大量沉淀,过滤后将滤饼放入真空干燥箱干燥12h,真空干燥得化合物3。产率:45%。
[0051]1h nmr(400mhz,cdcl3)δ(ppm):8.78(d,j=2.9hz,2h),8.76(m,2h),8.73-8.70(m,2h),8.42-8.38(m,2h),8.10-8.05(m,2h),7.96-7.91(m,2h),7.41(m,2h)。
[0052]
(3)化合物4的制备:化合物3(400mg,1.10mmol),质量分数为10%的钯碳(80mg),水合肼(8ml)在乙醇中回流搅拌24h;冷却至室温,过滤除去钯碳,并且旋蒸除去溶剂,水合肼难以完全除去,加入水和二氯甲烷进行萃取,并用饱和食盐水洗两次,并用无水硫酸钠干燥,旋干溶剂,得化合物4。产率:90%。
[0053]1h nmr(400mhz,cdcl3)δ(ppm):8.75(d,j=4.0hz,2h),8.71(s,2h),8.69(d,j=8.0hz,2h),7.92
–
7.87(m,2h),7.83
–
7.79(m,2h),7.37(m,2h),6.85
–
6.81(m,2h),5.32(s,2h)。
[0054]
(4)化合物6的制备:化合物4(324mg,0.43mmol)和化合物5(141mg,0.39mmol)在乙醇和去离子水的混合溶剂中回流反应84h;冷却至室温,旋蒸除去溶剂,加入少量的甲醇将固体完全溶解,再加入大量的丙酮和乙酸乙酯沉降得化合物6。产率:50%。
[0055]1h nmr(400mhz,dmso-d6)δ(ppm):9.62(d,j=6.4hz,1h),8.94(d,j=5.0hz,1h),8.87-8.83(m,2h),8.80(d,j=3.7hz,1h),8.73(d,j=8.2hz,1h),8.38(d,j=8.4hz,1h),8.18(m,2h),8.09(t,j=7.1hz,1h),7.60-7.56(m,1h)。
[0056]
(5)化合物tpy-vio-1-x-(x=cl,i)的制备:化合物6(0.5mmol,300mg)和碘甲烷
(8.0mmol,0.5ml)在乙腈溶剂和氮气氛围下于43℃反应24h;反应结束后,将反应液旋干,用dmso刚好溶解,加入适量丙酮,静置析出沉淀,过滤将滤饼真空干燥得化合物tpy-vio-1-x-(x1=cl,x2=i)。产率:60%。
[0057]1h nmr(400mhz,dmso-d6)δ(ppm):9.79(s,1h),9.66(s,1h),9.35(s,2h),8.96(d,j=30.5hz,9h),8.50(s,2h),8.36(s,2h),8.23(d,j=7.0hz,2h),7.95(s,1h),7.81(s,2h),4.49(s,3h)。
[0058]
13
c nmr(100mhz,dmso-d6)δ(ppm):156.5,155.1,153.8,151.6,149.9,148.2,145.9,143.3,141.0,140.8,138.1,129.3,126.3,125.8,125.2,122.6,121.6,118.8,40.0。
[0059]
实施例2:tpy-vio-1-x-(x1=cl,x2=i)的循环伏安测试
[0060]
tpy-vio-1-x-(x1=cl,x2=i)的循环伏安测试采用三电极体系,对电极是铂丝电极、工作电极是钯碳电极、参比电极为ag/agno3。四丁基六氟磷酸铵的dmf溶液(0.1m)作为电解质。扫描速度是100mv
·
s-1
。
[0061]
tpy-vio-1-x-(x1=cl,x2=i)的循环伏安图如图1所示。由图1a可知,此化合物在负级共有三对可逆的氧化还原峰,其中处于负电位低电势处的两对可逆的氧化还原峰对应于紫精双阳离子得一个电子和两个电子的还原电位,靠近高电势处的一对可逆的氧化还原峰对应于三联吡啶上的氮原子得失电子产生,由图1b可知此化合物正极的氧化峰对应于碘离子失去一个电子失去两个电子失去三个电子的氧化电位。
[0062]
实施例3:用tpy-vio-1-x-(x1=cl,x2=i)制成的器件在电刺激下颜色改变情况
[0063]
tpy-vio-1-x-(x1=cl,x2=i)器件的循环伏安图如图2所示。由图可知,以此化合物为电活性材料掺杂合适的电解质制备成电致变色器件,在未施加电压时,显示橙色,施加初步电压v
1=-1.2v后,器件的颜色变为黄绿色,再继续施加电压v
2=-1.8v后,器件的颜色变为墨绿色。
[0064]
实施例4:用tpy-vio-1-x-(x1=cl,x2=i)制成的器件在施加工作电压下的吸收光谱测试
[0065]
将紫外可见分光光度计和电化学分析仪连用,电化学分析仪是对器件施加电压,紫外可见分光光度计是测不同电压下器件吸收强度的变化。
[0066]
用tpy-vio-1-x-(x1=cl,x2=i)制成的器件在施加较低电压v1时,器件光学特性发生改变,由图3a可知,与0v时相比,在721nm处出现了一个较为明显的吸收峰,此时应该是由双阳离子态得一个电子转变为自由基阳离子态;继续施加电压v2时,其556nm处的吸收峰蓝移了35nm,应该是由自由基阳离子态转变为了中性态。由图3b可知,当持续施加电压一段时间后,吸收强度也不再增加,此时的电压比较稳定。
[0067]
实施例5:用tpy-vio-1-x-(x1=cl,x2=i)制成的器件在施加工作电压下的透过率测试
[0068]
测不同电压下器件透过率的变化需要紫外可见分光光度计和电化学分析仪同时连用。
[0069]
用tpy-vio-1-x-(x1=cl,x2=i)制成的器件在施加工作电压下吸收光谱如图4所示。由图可知,当施加较低电压v1时,在679nm处最大透过率31%,此时对应tpy-vio-1-x-(x1=cl,x2=i)得一个电子的自由基阳离子态;继续增加电压v2时,同样在679nm处有最大的透过率60%,此时对应tpy-vio-1-x-(x1=cl,x2=i)得两个电子的中性态。
[0070]
实施例6:用tpy-vio-1-x-(x1=cl,x2=i)制成的器件在施加工作电压下的电流消耗测试和循环稳定性测试
[0071]
用tpy-vio-1-x-(x1=cl,x2=i)制成的器件在施加工作电压下的电流消耗测试如图5所示。用tpy-vio-1-x-(x1=cl,x2=i)制成的器件在施加工作电压下的循环稳定性测试如图6所示。由图可知,器件在初始状态时,器件在679nm处透射率为92%,当施加工作电压后,其完全着色,透射率变为35%;在着色循环4小时后,其着色时透射率可达到90%,褪色时透射率为40%;与初始测试数据相比,其着色时的透射率降低了0.6%。此器件在工作电压下着色时间为10s,褪色时间为9s,着色效率为95%;由此可见,此器件的循环稳定性较好。
技术特征:
1.一类新型不对称紫精化合物,其特征在于,其化学结构式为下述结构式:其中,x
1-为i-、cl-、tfsi-、pf
6-、br-、clo
4-或bf
4-中的任意一个;x
2-为i-、cl-、tfsi-、pf
6-、br-、clo
4-或bf
4-中的任意一个;r独立地选自具有正整数个碳原子的支链、直链、环状醚链或环状烷基链。2.如权利要求1所述的一类新型不对称紫精化合物,其特征在于,其化学结构式为:3.权利要求1所述的一类新型不对称紫精化合物的制备方法,其特征在于,n=0时,所述化合物的合成路径如下,其中x包括x1和x2:4.权利要求1所述的一类新型不对称紫精化合物的制备方法,其特征在于,n=1时,所述化合物的合成路径如下,其中x包括x1和x2:
5.如权利要求1-2中任一项所述的一类新型不对称紫精化合物的应用,其特征在于,可利用其在电刺激下可以发生可逆的氧化还原特性,从而被用作制备电致变色器件。6.如权利要求1-2中任一项所述的一类新型不对称紫精化合物的应用,其特征在于,可以利用其缺电子特性以及可逆氧化还原特性,从而被用作制备有机液流电池。7.如权利要求1-2中任一项所述的一类新型不对称紫精化合物的应用,其特征在于,利用所述不对称紫精化合物的易接受电子特性,从而被用作超级电容器。8.如权利要求1-2中任一项所述的一类新型不对称紫精化合物的应用,其特征在于,利用所述不对称紫精化合物的内部可发生可逆电子转移反应,从而被用作电子转移催化剂。9.如权利要求1-2中任一项所述的一类新型不对称紫精化合物的应用,其特征在于,利用将金属与所述不对称紫精化合物的三联吡啶部分偶联来修饰金属,从而被用作抑制微生物影响的腐蚀。10.如权利要求1-2中任一项所述的一类新型不对称紫精化合物的应用,其特征在于,利用紫精理想的电子接受能力和良好的氧化还原行为,从而被用作储能装置中。
技术总结
本发明公开了一类新型不对称紫精化合物,该类化合物由受体4,4'-联吡啶、不同给体基团及不同的抗衡阴离子组成,结构式为本发明还公开了上述不对称紫精化合物的合成方法,主要是将不同富电子给体基团与缺电子的紫精双阳离子结合,再改变不同的抗衡阴离子得到一类具有不同抗衡阴离子的不对称紫精化合物;此类紫精化合物具有相对稳定的电致变色性能,在电刺激下,紫精化合物因其发生可逆的氧化还原反应而伴随丰富的颜色变化,因此以这种紫精化合物为电活性材料可以制备低电压驱动且颜色变化丰富的电致变色器件。致变色器件。致变色器件。
技术研发人员:刘淑娟 任秀丽 庄艳玲 赵强 朱名业 黄维
受保护的技术使用者:南京邮电大学
技术研发日:2022.02.18
技术公布日:2022/5/25
转载请注明原文地址:https://tc.8miu.com/read-9283.html